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Abstract

This paper is concerned with a vibration analysis of the transverse vibrations of rectangular plates with freely-
supported boundaries and corners fixed, in an imagistic way, to describe the deformation state for the specific
natural frequency and mode shape for each degree-of-freedom. Two materials, i.e. aluminum and steel, showing
the homogeneous properties in the direction of plate thickness were chosen. The exact solutions for free
vibrations of the homogeneous rectangular plate were obtained and the fundamental mode and integer multiple
of the fundamental period of vibration were provided. The comparisons show that the analytical model predicts
natural frequencies reasonably well for a rectangular plate.
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1. INTRODUCTION

The vibrational analysis has increased during the last three decades, particularly in the aerospace and
civil engineering. Plate vibration solutions available in an imagistic way are necessary to describe the
deformation state for the specific natural frequency and mode shape for each degree-of-freedom.
Various studies on the free vibration of rectangular plates with a wide range of support conditions
were reported [1-4]. Also, solution for forced vibration analysis are proposed in [5].

The finite element method FEM is currently used to describe the free vibration of plates by
hypothesizing a displacement field model that satisfies the convergence criteria. The FEM allows to
determine the natural frequencies of a rectangular plate. Ahmadian and Zangeneh [6] proposed a
numerical technique based on FEM and the concept of super elements to analyzed the rectangular
plate vibration problems. There are several practical models with a sound mathematical formulation
able to describe physical behavior of a vibrating plate with freely-supported boundaries and corners
fixed. For fixed corners plates many models have been reported. Gharaibeh and Obeidat [7] reported
the solution for a thin elastic rectangular, isotropic and orthotropic, plates with fixed corners using the
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Rayleigh method. Onwuka et al. [8] analyzed the vibration of an all-round-clamped rectangular thin
orthotropic

plate, by using Taylor- Mclaurin shape function and Ritz method. They reported that the fixed corners
plates have natural frequencies up to 2% higher than simply supported plates.

The goal of this study is to determine the natural frequencies computed for two shift frequencies, for
aluminium and steel rectangular plates with freely-supported boundaries and corners fixed. The
percentage differences between the natural frequencies computed for four mode shapes show that the
analytical model predicts natural frequencies reasonably well for a rectangular plate.

2. MATERIALS AND METHOD

A thin plate is defined as having a small thickness in comparison to the planer dimensions and the
analysis becomes a 2D problem. When a force is applied on normal direction to the surface of the
plate, it bends in two directions and a twisting moment appears.

In the framework of this study, the materials are assumed to be isotropic, homogeneous with density p,
Young’s modulus E and Poisson’s ratio v. The Kirchhoff’s plate theory is used. Let w denote the
deflection of the surface of the plate in the z direction. The total strain energy of the plate in terms of
the displacement w(x, y)is [1]:
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And the Kkinetic energy

: : Eh® .
where the plate stiffness factor is, D= ————— E=elastic modulus
12(1-p2)

h=plate thickness

u=Poisson’s ratio
X-Y plane is located in the plate surface (i.e. z=0). The in-plane contributions of the kinetic energies is
neglected. The variation of the displacement components U and V across the thickness are as follows:
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The direct strain is expressed as and the shear strain as
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The matrix form of these equations is .
The transverse displacement of a vibrating plate equation is given by

5 & w 5 & w & w & w
ax* T “axtayr Tayt| TP

0

tistime and p is the mass per unit area of the plate.
For fixed corners plates, the Rayleigh’s method, which is based on the energy conservation theorem is
used.

3. RESULTS AND DISCUSSION

The same thin plate (size x= 8 inch, y= 12 inch, thickness of 0.5 inch) is discretized into a 4 x 6 grid
and analyzed using the FEM and the corresponding frequencies are obtained. The transverse vibrations
of this rectangular plates with freely-supported boundaries and corners fixed and the mode shape are
simulated. Two materials, i.e. aluminum and steel, showing the homogeneous properties in the
direction of plate thickness are used. Figure 1 shows the grid used in FEM analysis.
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Fig.1. Finite plate of size x= 8 inch, y= 12 inch, thickness of 0.5 inch. The plate is divided
into a 4 x 6 grid. The shift frequencies: 25Hz and 100 Hz.
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Fig. 2. Mode of vibration for a freely-supported homogeneous plate. A) aluminium; b) steel.
The shift frequency 25Hz, thickness 0.5 inch, mass 0.5 Ibm, boundary conditions: all free
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Fig. 3. Mode of vibration for a homogeneous plate with corners fixed. A) aluminium; b) steel.
The shift frequency 25Hz, thickness 0.5 inch, mass 0.5 Ibm, boundary conditions: corners
fixed

Figures 2 and 3 display two examples of the shape mode of vibration for freely-supported and corners
fixed homogeneous plates. Only four modes are analyzed to save the computation time.

Tables 1 and 2 give the corresponding natural frequencies for all experimental conditions.

The highest frequency values were computed for fixed corners and steel. So, it is clear indicated that
once the boundary condition changes from free supported to fixed corners, the frequencies increase.
Also, the frequencies increase starting to mode 4 towards mode 10.

Table 1. Natural frequencies for aluminium and steel; shift frequency 25 Hz

Natural frequencies ¥# (Hz) FEM calculation
Mode boundary all free Mode corners fixed
o | ol o | o
4 2142.8 3711.6 4 5076 8786.4
6 4951.2 8575.7 6 7908.9 13699
8 6253.5 10831 8 11632 20148
10 91414 15833 10 13723 23768

Table 2. Natural frequencies for aluminium and steel; shift frequency 100 Hz

Natural frequencies & (Hz) FEM calculation

Mode boundary all free Mode corners fixed
o1, | oife 9L | ol
4 2140.6 3710.4 4 5072.8 8786.4
6 4950.2 8575.2 6 7908.9 13699
8 6252.8 10831 8 11632 20148
10 9140.9 15833 10 13723 23768
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Table 3. The percentage differences between the natural frequencies obtained
for shift frequencies of 25 and 100 Hz

The percentage differences
Mode boundary all free Mode corners fixed
fras L fres fras L fres Firad , Fixad Fixrad , Fixed
t9,;5 — t9]',;5 t9.’:7[555 — t91‘.’5[555 ﬂéi — t9j',;i t9.‘:7[55!5 — tﬂ'.‘ﬁggi
fras fras Flxad flxad
t?éi t9.’:-'[5!55 t?éi t9.’:7[555
4 0.102 0.03 4 0.06 0
6 0.020 5,83E-05 6 0 0
8 0.011 0 8 0 0
10 5,46 E-05 0 10 0 0

Table 3 shows that both results tend to converge as the shape mode increase. For aluminium,
the results diverge for lower shape modes. Similar comparison indicates a perfect
convergence for steel.

4. CONCLUSIONS

In this study, boundary condition effect, i.e. freely-supported and corners fixed, on free
vibration behavior of homogeneous plates is investigated. Frequency values are compared for
4 vibration modes. Also, two shift frequencies were studied. When the shape mode increases
the influence of shift frequency is diminished. The effect is more pronounced for fixed
corners plate.
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