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Abstract 
In  the early 2010s,  a new group of  illicit psychedelic phenethylamines  was reported by the law enforcement 
agencies,  namely  the  NBOMe hallucinogens. The latter seem to be sold on the black  market as an alternative 
to LSD, due to their  powerful  psychoactive effects. The goal of  this study was to develop an  optimized 
Artificial Neural Network (ANN) able  to classify NBOMe hallucinogens based on their functional groups. 
These chosen molecular descriptors (functional groups) have been computed, by using the Dragon 5.5 program, 
for  the molecular structures of the main  NBOMe hallucinogens, which have been first optimized by using the 
Hyperchem program.  The  ANN system  was  built with the Easy NN plus program. Then, the importance of 
each functional group has been assessed. A new input database has been built with the functional groups found 
to be the most important.The performance of the new ANN system  has been characterized  based on  several 
classification accuracy criteria. The impact of the variable selection on the ANN performances  is discussed in 
detail. 
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1. INTRODUCTION  
 

             New and harmful psychoactive substances are emerging at an unprecedented rate, so illicit 
drugs pose a serious threat to the health and safety of people around the world. A novel class of potent 
synthetic hallucinogens (NBOMe hallucinogens), originally developed for research purposes, was 
reported by the law enforcement agencies.  
            25I-NBOMe is a derivative of 2C-I (4-iodo-2,5-dimethoxyphenethylamine), which is the most 
representative compound of NBOMe hallucinogens. It is sold on the black market as an alternative to 
LSD, due to its powerful psychoactive effects [1]. Its chemical structures is represented in Fig. 1. 
 An Artificial Neural Network (ANN)  is an artificial intelligence application designed to 
simulate the mode in which the human brain processes information. This computer-based system learns 
through experience, not from programming. It gathers the necessary knowledge by detecting patterns in 
the data.  It is an excellent tool for classification purposes [2-3]. 
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Fig. 1. Molecular structure of the 25I-NBOMe hallucinogenic phenethylamine. 
 
            The most widely used ANN is a supervised network, that consist of three or more layers. One or 
more hidden layers, which consist of nodes capturing nonlinearity  in  the data, are situated between  the 
input  layer (consisting of  the input nodes) and the output layer (formed by the output nodes) 
            Most of the time, the backpropagation learning rule is used for calculating real gradients. This 
method refers to how the error generated at the output layer is propagated back to the hidden layer and 
finally to the input layer. The activation of a hidden layer node is calculated by using a transfer 
function. Usually, the sigmoid function is used in this procedure [4-6]. 
           The network reaches the highest level of accuracy during the training process when the 
connections between units are optimized until the prediction error is reduced below a set limit [7]. 
            The goal of this study was to develop a series of ANNs able to classify NBOMe hallucinogens 
based on their most important functional groups. The size of the input database was varied in order to 
find the most effective architecture. 
 

 
2. EXPERIMENTAL 

 
            The input database was created by calculating the molecular descriptors characterizing 160 
controlled substances, representing illicit drugs (hallucinogens NBOMe, narcotics, stimulant 
amphetamines and potent analgesics),  precursors and derived homologs. The database includes 15 
NBOMe hallucinogens, which have been assigned the class code “NBOMe”. The remaining 145 
substances have been assigned the “non-NBOMe” class code. 
          The molecular structures of all the 160 compounds were represented in 3D coordinates by using 
the HyperChem8.03 software package [8]. The geometry of the molecular structures was optimized 
based on the semi-empirical AM1 method.  The geometry was adjusted by applying the Polak-Ribere 
mechanism, until the conditions of the minimum energy of the molecular system have been reached. 
          These chosen molecular descriptors (functional groups) have been computed, for the molecular 
structures of  the main NBOMe hallucinogens, by using the Dragon 5.5 program. An ANN was created, 
with all these 31 functional groups, by using the Easy NN plus software. The most important 
descriptors were identified from this network and then, two new ANNs have been constructed by 
including various numbers of important descriptors in the database. 
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           All these networks have the same architecture, which consists of three layers (input, hidden and 
output layers). The transfer function used was the sigmoid function. The backpropagation algorithm has 
been applied in order to train the systems. These ANNs have been constructed by using descriptors 
calculated for the same sets of compounds. More specifically, the training set contains 8 NBOMe and 
17 non-NBOMe hallucinogens. The validation set consists of the remaining 135 samples. 
 The ANN training process is completed when convergence is reached, more precisely when the 
average training error falls below the target error. The threshold was set at TE = 0.01 for all networks. 
The systems have been cross-validated based on the leave-one-out algorithm. Then, the efficiency of 
each ANN network has been assessed based on its ability to correctly identify the class identity of an 
unknown sample. 
 The 31FG-ANN system has as input variables the 31 functional groups that have been computed 
for each of the compounds mentioned above. In order to estimate the minimum number of input 
variables needed to obtain an efficient system, another  two ANNs have been built by using as input 
variables the first 20 most important functional groups (20imp_FG_ANN  network) and the first 10 
most important  functional groups (10imp_FG_ANN  network) of 31FG-ANN, respectively. 
 The relative importance, determined for the first 20  most important descriptors of the 31FG-
ANN network in descending order, is shown in Fig. 2. 
 

 

Fig. 2. The first 20 variables found to have the highest relative importance by analyzing the 
31FG-ANN artificial neural network. 

 The 20imp_FG_ANN  network has 11 hidden  nodes and 242  weight connections after 
optimization. A number of 15 learning cycles were needed for ending the learning process (see Fig. 3). 
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Fig. 3. Training the 20imp_FG_ANN  artificial neural network, built with the first 20 most 
important descriptors. 

 
 Only 12 learning cycles were needed to train the ANN built with only 10 most important 
functional groups (10imp_FG_ANN network). This system has 8 hidden nodes and  96 weight 
connections after optimization. The architecture of  10imp_FG_ANN is illustrated in Fig. 4. 

                                  

Fig. 4. The architecture of the 10imp_FG_ANN artificial neural network, built with the first 
10 most important functional groups identified with the 31FG-ANN artificial neural network. 
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                              3. RESULTS AND DISCUSSION 
 

In order to compare the classification efficiency of these ANNs, several figures of merit have been 
calculated after the validation process of each ANN: the rate of true positives (TPR), of true negatives 
(TNR), of false positives (FPR), of false negatives (FNR), of classification (CR), and accuracy (ACC). 
The results obtained for the ANN built with the first 20 most important functional groups are presented 
in Table 1 and those obtained for 10imp_FG_ANN in Table 2. 

 
Table 1. Classification accuracy indicated by the validation process for the 20imp_FG_ANN 

artificial neural network, which has been built with the first 20 most important functional groups. 
 

 
Validation parameter 

 
Network 

 
 

20imp_FG_ANN 
 

TPR  (%) 100 

TNR (%) 88.19 

FNR (%) 0 

FPR  (%) 11.80 

CR   (%) 99.38 
ACC (%) 89.31 

 
Table 2. Classification accuracy indicated by the validation process for the 10imp_FG_ANN 

artificial neural networks built with the first 10 most important functional groups. 
 

 
Validation parameter 

 
Network 

 
 

10imp_FG_ANN 
 

TPR  (%) 100 

TNR (%) 88.28 

FNR (%) 0 

FPR  (%) 11.72 

CR   (%) 100 
ACC (%) 89.38 

 
 
 The results indicate that both networks fail to recognize as negatives the same false positives, 
which are N-methyltriptamine, oxyfedrine, P-hydroxiephedrine, pipradol and papaverine. Their 
chemical structures are represented in Fig. 5. 
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Fig. 5. Molecular structure of the negatives classified as (false) positives by the  
20imp_FG_ANN and 10imp_FG_ANN networks. 

 
 As Fig. 2 indicates, the most important descriptor  is nRNHR, the number of secondary amino 
groups. We may conclude that the first three compounds have been misclassified as false positives most 
probably because they contain an aliphatic secondary amine, chemical group that is also found in the 
molecular structures of the NBOMe hallucinogens. The misclassification of the last two negatives 
mentioned in Fig. 5, pipradol and papaverine, is probably due to the fact that nCar, the number of 
aromatic carbons, which is another highly important descriptor (see Fig 2), has the value of 12 
(aromatic carbons) for these two negatives as well as for the NBOMe compounds. 
 
 

4. CONCLUSIONS 
 

Table I and Table II indicate that both ANN systems (20imp_FG_ANN network  and 
10imp_FG_ANN) created with only the most important functional groups, as identified with the 31FG-
ANN network, have a remarkable sensitivity. They are both characterized by TPR = 100%, which 
means that all positives (NBOMe hallucinogens) are recognized as such. Hence, if the input variables 
are selected based on their importance, the input database can be diminished from 31 to 10 functional 
groups without jeopardizing the sensitivity of the system screening for NBOMe hallucinogens. 

Both 20imp_FG_ANN network  and 10imp_FG_ANN networks have also a good selectivity, 
their correct classification rate of the negatives (TNR > 86%) being nearly the same. Hence, selecting 
the variables based on their importance does not affect their capacity to distinguish NBOMe 
hallucinogens from negatives either. 
 An important observation is that the networks created with the most important functional groups 
were able to classify all the samples subjected to classification, with the exception of 20imp_FG_ANN, 
for which CR = 99.38%. On the other hand, decreasing the number of input variables (according to 
their importance) to 10, increased CR up to 100%  (for 10imp_FG_ANN).  
 We may hence conclude that the best performing ANN is 10imp_FG_ANN. In other words, 
ANNs constructed with selections formed by the most important functional groups, in particular 
10imp_FG_ANN, are valuable tools for estimating the toxicity of compounds that have a molecular 
structure similar to those of the NBOMe hallucinogens. The 10imp_FG_ANN system is also very cost-
effective, as it eliminates important costs related to the synthesis, as well as to the clinical and 
toxicological testing of a unknown drugs that need to be evaluated toxicologically. 
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