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Abstract  

In the last few years there has been a rapid increase in the availability and recreational use of 

synthetic hallucinogens. One novel group of toxic phenethylamine derivatives, referred to as 

NBOMe, has recently gained prominence. The goal of this study was to develop an Artificial 

Neural Network (ANN) able to classify NBOMe hallucinogens based on their molecular 

descriptors. The database consists of 161 compounds representing drugs of abuse (NBOMe 

hallucinogens, sympathomimetic amines, narcotics and other potent analgesics), precursors, or 

derivatized counterparts. The molecular structures of all the compounds included in the 

database have been first optimized and then the molecular descriptors have been determined 

by using the Dragon 5.5. software. The validation has been performed by using all the 

available samples and the leave-one-out algorithm. The efficiency with which the ANN 

system identifies the class identity of an unknown sample was evaluated by calculating several 

figures of merit.  
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1. INTRODUCTION 

 
The molecular structures of phenethylamines contain a phenyl ring, joined to an amino group 

via an ethyl side chain (see Figure 1). These designer drugs, which are also called „N-bomb”, „legal 

acid”, „smiles” or “25I”, are highly potent hallucinogens that are regarded as alternatives to LSD [1]. 

 
Figure 1. Molecular structure of the 25I-NBOMe hallucinogenic phenethylamine. 
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Artificial Neural Networks (ANNs) are a group of statistical learning algorithms. They are 

derived from a simplified brain concept and consist of a computer-based system in which a number of 

nodes, called processing elements or neurons, are interconnected in a network-like structure. Thanks 

to their adaptive nature, they are powerful pattern recognition methods. They may also be considered 

machine learning techniques [2-3].  

Many algorithms are available for training the neural network models. They are usually based 

on the optimization theory and statistical estimations. Backpropagation is often used to compute the 

actual gradients. Then, some form of gradient descent methodology is applied by simply taking the 

derivative of the cost function with respect to the network parameters. Then the system changes these 

parameters in a gradient-related direction [4-6].  

The most frequently used architecture of an ANN is the multilayer feed-forward network, i.e. 

a network in which the nodes are divided into three types of layers. The first layer consists of the 

input nodes and it is followed by one or more layers of hidden nodes. The last layer consists of output 

nodes. The input nodes activities and the weights are associated with the connections between the 

nodes. The hidden nodes determine the activity of each hidden node. 

ANNs have the ability to learn from experience, to improve performance and adapt to changes 

in environment. Also, they are able to handle incomplete information. They may be very effective, 

especially in situations where it is not possible to identify rules or steps necessary for solving a 

problem [7-9]. 
 

2. EXPERIMENTAL PART 
 

The database consists of 160 compounds representing forensic substances such as drugs of 

abuse (NBOMe hallucinogens, sympathomimetic amines, narcotics and other potent analgesics), 

precursors and derivatized counterparts, out of which 15 are NBOMe hallucinogens (class code 

NBOMe) and 145 other types of hallucinogens (class code non-NBOMe). 

The molecules included in the database have been represented in 3D coordinates by using the 

HyperChem 8.03 software package [10]. Their molecular geometries have been optimized by using 

the AM1 semi-empirical quantum mechanics method, the Polak-Ribiere algorithm being applied to 

adjust the geometry and determine the conditions in which the minimum energy of molecular system 

is reached. 

A number of 74 constitutional descriptors and functional groups (CD+FG) were computed for 

each of the 160 compounds included in the database, by using the Dragon 5.5 software package. The 

calculated descriptors are summarized in Table 1. 

 

Table 1. List of constitutional descriptors and functional group counts. 
 

Description Symbols Description Symbols 

Average molecular weight AMW Number of ring secondary C(sp3)  

    nCrs 

Molecular weight MW Number of ring tertiary C(sp3) 
    nCrt 

Sum of atomic van der Waals volumes Sv Number of ring quaternary C(sp3) 
    nCrq 

Sum of atomic Sanderson electro negativities  Se 
 

Number of aromatic C(sp2) 

 

    nCar 

Sum of atomic polarizabilities Sp 

 

Number of unsubstituted benzene 

C(sp2) 

 

    nCbH 

Sum of Kier-Hall electro topological states Ss 

 

 Number of substituted benzene 

C(sp2) 

     

    nCb- 

Mean atomic van der Waals volume Mv 
 Number of non-aromatic conjugated 

C(sp2) 

 

    nCconj 

Mean atomic Sanderson electro negativity Me 
 

Number of aliphatic secondary C(sp2) 

 

    nR=Cs 
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Mean atomic polarizability Mp 
 

Number of esters (aliphatic) 

 

    nRCOOR 

Mean electro topological state Ms 
 

Number of esters (aromatic) 

 

    nArCOOR 

Number of molecule atoms nAT 

 

Number of secondary amides 

(aliphatic) 

 

    nRCONHR 

Number of non-H atoms       nSK   

Number of tertiary amides (aliphatic) 

 

    nRCONR2 

Number of bonds nBT  

Number of primary amines (aliphatic) 

 

    nRNH2 

Number of non-H bonds nBO 

 

Number of secondary amines 

(aliphatic) 

 

    nRNHR 

Number of multiple bonds nBM  

 Number of tertiary amines (aliphatic) 

 

    nRNR2 

Number of double bonds nDB  

Number of imides (-thio) 

 

    nN(CO)2 

Number of aromatic bonds nAB  

Number of hydroxyl groups 

 

    nROH 

Number of heavy atoms nHM  

Number of secondary alcohols 

 

     nOHs 

Atom-type counts 

nH, nC, nN, nO, nS, 

nF, nCL, nBR, nI, nX 

 

Number of ethers (aromatic) 

 

    nArOR 

Functional group counts  

nOH, nNH, nNH2, 

nCO 

 

Number of sulfides 

 

    nRSR 

Number of donor atoms for H-bonds nHD  

 Number of X on aromatic ring 

 

     nArX 

Number of acceptor atoms for H-bonds nHA 

Number of donor atoms for H-bonds 

(with N and O) 
    nHDon 

Counts of different size rings 

nCIC, nCIR, nR04, 

nR05, nR06, nR07, 

nR08, nR09, nR10, 

nR11, nR12 

Number of acceptor atoms for H-

bonds  

(N O F) 
    nHAcc 

Sum of conventional bond orders (H-

depleted) 

    

SCBO    Number of Pyrrolidines 
    nPyrrolidines 

Aromatic ratio 
      ARR 

   Number of Pyridines 
    nPyridines 

Number of rotatable bonds 
      RBN 

Rotatable bond fraction 
      RBF 

Number of benzene-like rings 
      nBnz 

Number of total primary, secondary, tertiary , 

quaternary C (sp3)     nCp,  nCs,    nCt,    

nCq 

The ANN was built using the Easy NN plus software and has three layers (input, hidden and 

output layer). The transfer function is the sigmoid function. The network was trained by using the 

backpropagation algorithm. The training set consists of 8 NBOMe hallucinogens and 17 non-NBOMe 

compounds. The validation set is formed by the remaining 135 samples. The neural network (74CD-

GF_ANN) has as input variables a number of 74 constitutional descriptors and functional groups that 

have been calculated for each sample. Its architecture, which resulted from the optimization process, 

consists of 12 hidden nodes and 912 weight connections. The 74CD-GF_ANN system was designed 

with two output nodes, i.e. NBOMe and non-NBOMe compounds (see Fig.2). 
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Figure 2. Development of the 74CD-FG_ANN system. 
 
  

3. RESULTS AND DISCUSSION 
 

The neural networks has been programmed to stop the training process when the training 

average error drops below the target error set at TE = 0.01. The process is illustrated in Fig. 3. 

 

 
Figure 3. Evolution of the training process of the 74CD-GF_ANN neural network. 
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The validation was performed by applying the leave-one-out algorithm for all the remaining 

samples. The efficiency with which 74CD-GF_ANN identifies the class identity of an unknown 

sample was evaluated by calculating several figures of merit: the rate of true positives (TP), of true 

negatives (TN), of false positives (FP), of false negatives (FN), of classification (C), and of correctly 

classified samples (CC). 

 

                                        Table 2. The results of the validation process. 
 

 
74CD-FG_ANN 

TP (%) 
100.00 

TN (%) 
80.99 

FN (%) 
0.00 

FP (%) 
19.01 

C (%) 
98.13 

CC (%) 
82.80 

                       
 

                  
                                

Figure 4. The rate of true positives (TP), of true negatives (TN), of classification (C) and of correctly 

classified samples (CC) for the 74CD-FG_ANN system. 

 

The absolute importance of an input variable (node) was determined as the sum of the 

absolute weights characterizing the connections between this input node and the nodes of the hidden 

layer. The input importance is a measure of how each input will influence the next layer in the 

network. Fig. 5 illustrates the relative importance of the most efficient of the 74 constitutional 

descriptors and functional group counts. 
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Figure 5. Variables found to have the highest relative importance for the 74CD-FG_ANN system. 

 
The relative sensitivity is a measure of how much the outputs change when the inputs are 

changed. The inputs are all set to the lowest values and then each in turn is increased to the highest 

value. The change in the outputs is measured as each input is increased from lowest to highest in 

order to establish the sensitivity to change. As Fig. 6 shows, the 74CD-FG_ANN system has a very 

good sensitivity, which means that it recognizes the NBOMe hallucinogens very efficiently. 

            

                 Figure 6. Relative sensitivity of the 74CD-FG_ANN system. 

 

4. CONCLUSIONS 

 
The 74CD-FG_ANN system, built with constitutional descriptors and functional groups, 

yields very good results. It allows the identification of any of the hallucinogens included in the 

database, as well as of any unknown (new drug of abuse not included in the database) that has a 

biological activity and toxicity similar to the NBOMe class of illicit hallucinogenic amphetamines. An 

important advantage of this detection process is that this type of detection avoids the costs related to 

the synthesis, as well as of the clinical and toxicological tests that must be performed to evaluate the 

toxicity of the unknowns found on the black market. 
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If 74CD-FG_ANN classifies a compound as positive, it means that the compound has the 

same biological activity as the modeled NBOMe hallucinogens. The correct classification of the 

positives is especially important in the forensic practice, where the positive identification of drugs of 

abuse must not fail.  

In our case, the 74CD-FG_ANN system has a very good sensitivity (a TP rate of 100%), 

meaning that all positives (NBOMe hallucinogens) are correctly recognized as such. This also means 

that the descriptors that were chosen to build this network contain enough of the discriminant 

information needed to distinguish NBOMe hallucinogens from negatives. The selectivity, as measured 

by the efficiency in classifying the negatives (non-NBOMe hallucinogens) is also very good (TN = 

80.99%). 
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