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Abstract 

In this study, a total of 60 brain DW-MRI images belonging to three patients showing health, 

multiple hemorrhagic areas in the left temporal lobe and ischemic stroke pathologies were 

analyzed with a Gaussian Mixture Model (GMM) for classification-based clustering. To optimize 

the clustering analysis and to investigate the performance of the classification, various first order 

statistical based features such as entropy, energy, kurtosis and skewness were used as 

distinguishable features. Also, the mixing proportion of the chosen components of GMM were 

investigated. Experiments are performed on DW-MRI images acquired with two magnetic field 

gradient values or b-value (b = 500 s/mm2 and  b = 1000 s/mm2) and for non diffusion-weighted 

images (b = 0 s/mm2). The experimental results show that GMM classifier together with kurtosis 

and skewness first order statistics-based features better discriminate between studied classes and 

can be applied for components identification successfully.  
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1. INTRODUCTION  

 
  The classification based on the maximum likelihood usually cover many clustering algorithms 

and, in this paper, we limit our approach to Gaussian distributions. Among they, mixture models allow 

for probabilistic modelling of data, being used in pattern recognition, machine learning, computer 

vision, and signal processing research areas [1-5]. If more information we gather about each dataset 

featured by m variables, the clustering method is expected to better perform. 

The clustering-based methods used various models for clusters in order to optimize the 

correlation between the analyzed data and the model. Each cluster is characterized by a parametric 

distribution, in our case a Gaussian distribution is used, and the experimental data set is modelled by a 

mixture of these distributions. Bouveyron et al. [6] discussed on a proper Gaussian mixture family in 

order to simultaneously cluster the data and reduce their dimension. On the other hand, Law et al. [7] 

proposed a set of real-valued quantity for each variable in the mixture of the distribution with the final 

goal to evaluate the importance of the variable in the clustering process. The main advantage of 

model-based clustering consists of the possibility to evaluate the number of mixture components and 

to assess the role of each variable in a clustering process.  
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The individual distributions that are combined to form the mixture distribution are so called 

‘mixture components’, and their associated probabilities (or weights) are known as ‘the mixture 

weights’ [8]. From the perspective of clustering optimization and classification accuracy, a better 

approach is to split the Gaussian mixture in their components [9]. 

2. EXPERIMENTAL METHODS 

2.1 GAUSSIAN MIXTURE MODEL (GMM) 

 
Gaussian mixture is a model-based approach in which the analyzed experimental classes are 

subjected to various distributions, such as the Gaussian distribution, whose parameters are optimized 

to match the experimental data. A Gaussian model assumes that the experimental data follows a 

Gaussian distribution (characterized by a mean and a standard deviation) and the use of a larger 

number of Gaussian distributions in a combination model allows the efficient characterization of 

complex databases. Let be a random variable X that supports the numerical values x and its probability 

is denoted P{}. The distribution function is defined as the probability that the realization of a 

particular situation of the random variable X is less than or equal to x [10]: 

 𝐹𝑥(𝑥) = 𝑃{𝑋 ≤ 𝑥}   and  0 ≤ 𝐹𝑥(𝑥) ≤ 1 

The probability density function is defined as follows: 

 𝑓𝑋(𝑥) =
𝑑𝐹𝑥(𝑥)

𝑑𝑥
 , 𝑓𝑋(𝑥) ≥ 0                        (1) 

The probability can be seen as: 

𝑃{𝑋 ≤ 𝑥} = 𝐹𝑥(𝑥) = ∫ 𝑓𝑋(𝑡)𝑑𝑡 
𝑥

−𝑥

 

𝑃{𝑥1 < 𝑋 ≤ 𝑥2} = 𝐹𝑥(𝑥) = ∫ 𝑓𝑋(𝑡)𝑑𝑡 
𝑥2

𝑥1
   or    𝑃{𝑋 ≈ 𝑥} = 𝑓𝑥(𝑥)𝑑𝑥 = 𝑃{𝑥 < 𝑋 ≤ 𝑥 + 𝑑𝑥} 

The probability density for Gauss distribution is as follows [11] : 

𝑁(𝑋; 𝜇, 𝜎2): 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

(𝑥−𝜇)2

2𝜎2  ,                                    (2) 

where μ represents the mean of values and σ is the standard deviation. 

The Gaussian Mixture Model (GMM) are based on the following assumptions: 

- for k classes or data sources, each source generates data with an average value μi (Gaussian 

distribution); 

- for a source i, characterized by a probability pi, the data generated has the probability distribution 

~N(μi, 2). For a set of characteristics 𝜆𝑖, the Gaussian mixture is the weighted sum of the M 

components of the mixture: 

𝑝(𝑥𝑡⃗⃗  ⃗ 𝜆𝑗⁄ = ∑ 𝑔𝑖𝑁(𝑥𝑡⃗⃗  ⃗; 𝜇𝑖⃗⃗  ⃗; ∑ 𝑖)𝑀
𝑖=1 ).                                   (3) 

where 𝑔𝑖 represents the weight of the model mixtures. The imposed condition is ∑ 𝑔𝑖 = 1,𝑀
𝑖=1  and 

𝑁(𝑥𝑡⃗⃗  ⃗; 𝜇𝑖⃗⃗  ⃗; ∑ 𝑖) represents the specific weights for each set of individual characteristics or component 

(characterized by mean and mean square deviation). 

In the present study, the components means the main brain tissues: white matter, gray matter 

and cerebrospinal fluid. 

 

2.2. CLUSTERING ALGORITHM 
 

To determine optimally which component is best suited to the distribution of input data in the 

feature space (within the model - GMM), different classifiers are available [12]. Clustering means the 

method of segmenting a set of data into multiple clusters based on a certain similarity [13]. Clustering 

techniques are unsupervised algorithms in which the test data is composed of a set of input vectors that 

initially do not match any set of output vectors. Thus, the algorithm receives only unlabeled data, and 

its task is to find an adequate representation of the data distribution, to be grouped into relevant 
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clusters. Clustering techniques group the input data according to distance separating representative 

points. 

The classical clustering problem was applied to our data sets (60 images of three subjects and 

for gradients 𝑏 = 0 𝑠 𝑚𝑚2⁄ , 𝑏 = 500 𝑠 𝑚𝑚2⁄  and 𝑏 = 1000 𝑠 𝑚𝑚2⁄ ). It follows  the steps:  

(1) A set of data },...,,{ 21 nxxxX   is given, where xi is a non-labeled entity that is assigned a 

row-vector Vi of size m (with m characteristics). It is required to find the most natural 

partitions of X: {𝐶1, 𝐶2, … , 𝐶𝑘}, with 𝑘 ≤ 𝑛, so that entities belonging to the same class are as 

close as possible, and those belonging to different classes or as far as possible [14]. 

(2) Gaussian Mixture Model uses the k-means method for clustering and optimize this process by 

using the Expectation Maximization EM algorithm. The EM optimization algorithm is a 

general method for estimating the maximum probability of distribution parameters in a given 

set when the data is incomplete or has missing values. There are two main applications of the 

EM algorithm. The first occurs when the data really has missing values due to problems or 

limitations of the observation process. The second occurs when the optimization of the 

probability function is analytically impossible to be solve, but when the probability of the 

function can be simplified, assuming the existence of additional but missing (or hidden) 

values. The algorithm works by following steps:  

 First step: 

 Intialize k clusters: C1, …, Ck 

       (µj,∑j) and P(Cj) for each cluster j. 

 

 Iteration step: 

 Expectation Step: 

𝒑(𝒙𝒊 𝑪𝒋⁄ ) =
𝒑(𝒙𝒊 𝑪𝒋⁄ ).𝒑(𝑪𝒋)

𝒑(𝒙𝒊)
 = 

𝒑(𝒙𝒊 𝑪𝒋⁄ ).𝒑(𝑪𝒋)

∑ 𝒑(𝒙𝒊 𝑪𝒋⁄ ).𝒑(𝑪𝒋)𝒋
 

 Maximization Step: 

                                                      𝝁𝒋 =
∑ 𝒑(𝑪𝒋 𝒙𝒊⁄ ).𝒙𝒊𝒊

∑ 𝒑(𝑪𝒋 𝒙𝒊⁄ ).𝒊
   ∑𝒋 =

∑ 𝒑(𝑪𝒋 𝒙𝒊⁄ ).𝒊 (𝒙𝒊−𝝁𝒋).(𝒙𝒊−𝝁𝒋)
𝑻

∑ 𝒑(𝑪𝒋 𝒙𝒊⁄ ).𝒊
   𝒑(𝑪𝒋) =

∑ 𝒑(𝑪𝒋 𝒙𝒊⁄ ).𝒊

𝑵
 

 

The K-means clustering method classifies a set of input data into a preset number of K clusters. The 

basic idea is to define K weight centers, called centroids, one for each cluster. Then each element in 

the input data set is assigned to the nearest centroid. The first stage of the grouping ends when there 

are no items left unassigned. At this point, it is necessary to calculate the new centroid for the clusters 

determined in the previous step. The process continues until the positions of the new centroids no 

longer change significantly [15]. 

 

2.3 FIRST-ORDER TEXTURAL FEATURES 

 

The texture features of an image are determined by how the gray levels are distributed across 

pixels in the region. It quantifies the properties of a certain region by exploiting the spatial 

relationships among pixels and by underlying the distribution of gray levels of a given image. 

Suppose that the image is a function f(x, y), x = 0,1, ..., N-1 and y = 0,1, ..., M-1.  The total 

number of intensity levels in the image is denoted by G, i = 0,1, ..., G-1. The histogram of the intensity 

level is a function that shows (for each level of intensity) the number of pixels from the entire image 

that have the same intensity: 
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ℎ(𝑖) = ∑ ∑ 𝜎(𝑓(𝑥, 𝑦), 𝑖)

𝑀−1

𝑦=0

𝑁−1

𝑥=0

 

                                (4) 

where σ is the Kronecker delta function 

𝜎(𝑗, 𝑖) = {
1, 𝑗 = 𝑖
0, 𝑗 ≠ 𝑖

} 
                                (5) 

The probability density of the intensity levels is obtained by dividing the values h(i) by the 

total number of pixels from the image. 

𝑝(𝑖) =
ℎ(𝑖)

𝑁𝑀
, 𝑖 = 0,1, … , 𝐺 − 1 

                           (6) 

The shape of the histogram gives many information about the nature of the image. For 

example, a narrow distributed histogram indicates an image with low contrast. A bimodal histogram 

often suggests that the image contained an object with a certain intensity range on a background of 

different intensity. The following first-order statistics allow the description of the various statistical 

features of the images [16]: 

 

Mean 𝜇 = ∑ 𝑖𝑝(𝑖)

𝐺−1

𝑖=0

 

               (7) 

 

Variance  𝜎2 = ∑(𝑖 − 𝜇)2𝑝(𝑖)

𝐺−1

𝑖=0

 

               (8) 

 

Skewness 𝜇3 = 𝜎−3 ∑(𝑖 − 𝜇)3𝑝(𝑖)

𝐺−1

𝑖=0

 

               (9) 

 

Kurtosis 𝜇4 = 𝜎−4 ∑(𝑖 − 𝜇)4𝑝(𝑖) − 3

𝐺−1

𝑖=0

 

             (10) 

 

Energy 𝐸 = ∑[𝑝(𝑖)]2
𝐺−1

𝑖=0

 

             (11) 

 

Entropy 𝐻 = − ∑ 𝑝(𝑖)𝑙𝑜𝑔2[𝑝(𝑖)]

𝐺−1

𝑖=0

 

             (12) 

 

2.4. DATA ACQUISITION 
 

The images were acquired by using a 1.5T Philips MRI scanner (Philips Medical Systems, 

Best, the Netherlands) with a six-channel sensitivity encoding (SENSE) for faster scanning (FS =1.5). 

The scanning parameters were: 3D gradient echo, echo time (TE) (from 83 to 110 ms), and repetition 

time (TR) (from 6500 ms to 7800 ms), bandwidth = 1070 Hz/pixel, flip angles = 2- and 6-, voxel 

resolution = 2.5 - 3.0 mm, slice thickness = 4 mm, and 128 slices. DW-MR images were obtained 

from three adult patients: one healthy, one with multiple hemorrhagic areas in the left temporal lobe 

and one suffering from stroke. DW-MRI images were acquired using two diffusion gradient values 

( 𝑏 = 500 𝑠 𝑚𝑚2⁄  𝒂𝒏𝒅 𝑏 = 1000 𝑠 𝑚𝑚2⁄ ). Images were also acquired without using diffusion gradient 

(𝑏 = 0 𝑠 𝑚𝑚2⁄ ) but with identical imaging parameters. 

Subsequent data processing was performed using the Matlab programming language software 

(The MathWorks, Inc., Natick, MA, USA) based on the methods described previously in [17]. 

 

3. RESULTS AND DISCUSSION 
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The clustering results for the chosen features, i.e. energy, entropy, skewness and kurtosis are 

represented for 20 of the MRI images from the healthy subject HS, 20 from the multiple hemorrhagic 

areas in the left temporal lobe HM and 20 from IS ischemic stroke IS ( Fig. 1). 

 

 

 

Figure 1: The clusters found by GMM method and  3D correlation for HS, HM and IS subjects 

 

The correlation between the corresponding variables/analyzed classes is strong if the data is very 

close packed so that, there is a clear linear trend in any direction in the three-dimensional space of the 3D 

scatter plot. According to data in figure 1, the energy and entropy features meet this requirement; energy 

better than entropy. Important dissimilarities between analyzed classes were determined for kurtosis and 

skewness features. An important finding is that, based on the EM algorithm, the features like skewness 

and kurtosis show the best clustering results, for all three subjects. The data were well classified into 

components and a few data is “misclassified” being somewhere in between the clusters. 
 

The mixing proportion of each component and for each features (energy, entropy, kurtosis and 

skewness) for the analyzed subjects (i.e. healthy subject, multiple hemorrhagic area in the left 
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temporal lobe and subject with ischemic stroke) are displayed in Table 1. The best results were 

obtained for kurtosis feature and the third component.  

 

 

 

Table 1. The mixing proportion of each component for energy, entropy, kurtosis and skewness. The 

GMM model uses three components, namely white matter, gray mater and CSF 

 

 

 Energy Entropy Kurtosis Skewness 

Component 1: 0.239 0.341 0.100 0.184 

Component 2: 0.299 0.256 0.160 0.390 

Component 3: 0.260 0.402 0.741 0.424 

 

The mixing proportion of the components indicate the density of the input data into the GMM. 

The energy feature approach shows a balanced distribution between the components while kurtosis 

feature encapsulates more density for component 3. The energy feature does not strongly associated 

with either component. On the contrary, the kurtosis feature strongly associated with one component. 

These results can be interpreted as a posterior probability of belonging to the three components and 

they allow us to a priori chose and a posterior validate the number of components. In the present case, 

we a priori chose three components as the brain is characterize by three main tissues, but the results of 

clustering analysis indicated a good separation between components for kurtosis and skewness. This is 

the a posterior validation. 
 

CONCLUSIONS 
 

This study analyzed the usefulness of the first order features of clustering algorithms, such as 

k-means and EM, respectively. The standard was the healthy subject (HS), compared to a subject with 

multiple hemorrhagic areas in the left temporal lobe (HM) and another subject who underwent 

ischemic stroke (IS). The correlation analysis for analyzed HS, HM and IS classes allows to conclude 

that kurtosis and skewness features are the “well-clustered” data. Moreover, the GMM model gives the 

possibility to decide a posteriori the best way for data clustering. 
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