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Abstract

Using the classical sequence that converges to the Euler-Mascheroni constant, we will define a
new sequence and new inequalities associated with the Euler-Mascheroni constant using the

sum of inverses numbers of odd natural numbers. As a consequence we establish an estimate for
the sum of inverses of odd natural numbers.

1. INTRODUCTION

It is well known that the sequence

7, :1+—+...+1—Inn, n>1,
2 n

is convergent to a limit denoted y = 0,5772... now known as Euler-Mascheroni constant. Many authors
have obtained different estimates for y, —y, for exemple the following increasingly better

Many estimations have been given in the literature for y, — 7. We recall some of them:
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. 1 .
A simple calculus (see [3]) shows that for all a > 3 there exists n, € N such that

1 1

> <7n—y<—l,foralln2na.

n+a on4t
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3 2n—
1 1 1 1 1 1, 1 1

=+ +—=—A+=+...+)==(r, - +=>Unn+y),
Vo=t gmto =547 D=5+ (nn+y)

. o 1 .
then by the above inequalities it results that for all a > § there exists n, € N such that

#<yn—llnn—iy<;, forall n>n,.
2(2n+a)

1 1
The convergence of the sequence (Y, — > Inn) to 5 y is very slow. With a modified

sequence (X,) we obtain a faster convergences and we prove that for all a >0 there exists n, € N

such that
1

48(n + a)*

1 1
<X —=In(4n)—=v < ,
o INAN =5y < g

forall n=n,.
. 1 1
From the definition of y, we have y,, =X, +Y, —In(2n) = X, -3 In(4n) + E;/n.
. 1
By the convergence of y, to y it results that the sequence a, = X, —Eln(4n)
1
converge to 57'

. 1 1 .
Now we define the sequence b, = X, —Eln(4n) —Ey. The tool for measuring the speed of

convergence is a result stated by Mortici [5] according to which a sequence b, converging to zero is
the fastest possible when the difference b, —Db, ., is the fastest possible. More precisely, if there exists

. . I
the limn“(b, —b,,) =1, then limn*'b, = —.

Recent results using this lemma were obtained for example in [2, 4-6].

In our case of b, , we have b, —b,,, = 1 In(L+ 1) _ 1 , and using a Mac-Laurin growth
2 n" 2n+1
serieweget b, —b_, = 1 +O(i) andso limn®(b, —b )—i
g n n+l — 24n3 n4 ' N300 n n+tl/ — 24
. 1
By the above result we obtain limn®h, = —— = —.
N0 k-1 48

2. THE MAIN RESULT

Theorem 2. 1. (i) For every n>1 we have
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a L, 1.
"2 g
(ii) Forevery a >0 there exists n, € N such that
1 1
————<a,—<y forall n=n,.
48(n+a) 2
Proof. We define the sequence
c,=4a, —17/—;2 :1+l+...+ L —lln(4n)—1y——2, for a>0,
2° 48(n+a) 3 2n-1 2 2° 48(n+a)
andso c,,, —c¢, = f(n), where
f(n)=L—£In(4n+4)+iln(4n)— ! 5+ ! 5
2n+1 2 2 48(n+a+1)° 48(n+a)
The derivative of function f isequal to
. 2 1 1 1 1
f (n) = 2 - +—+ 3 — 3 =
2n+1)° 2(n+1) 2n 24(n+a+1)° 24(n+a)
P(n)

T 24n(n+)@n+)%(n+a)y(n+a+l)’’
where
P(n) = 48an® + (168a° +120a - 7)n* + 2(120a° +168a* + 45a — 7)n° +

+(180a“ +360a°® + 201a® +15a —8)n* + (72a° +180a” +144a° + 33a* —3a-1)n+12a°(a +1)°.

(i) If a=0 then P(n)=-7n*-14n>-8n°>-n<0,
forall n>1 and then f is strictly decreasing. Since f (o) =0 it follows that f(n)>0 forall
n>1,sothat (c,) is strictly increasing.

Since (c,) converges to zero it follows that ¢, <0 forall n>1, so that

1
a ——y<——, foral n>1.
" 27 agn?

(i) If a > 0 then there exists n, € N such that P(n) > 0 for all n>n, and then f is strictly
increasing on [n,,o0). Since f(0) =0 itresults that f () <Oforall n=n,, sothat (C,),., Is
strictly decreasing.

Since (C,) converges to zero it follows that ¢, >0 forall n>n_, so that

1 1
————<a,—_y forall n>n,. L]
48(n+a) 2
Remark. By this theorem it results that for every a a > 0 there exists n, € N such that
%+1In(4n)+ly<1+l+...+ ! < 1 5
48(n+a)” 2 2 3 2n-1 48n
Now we find the constant n, in some particular case.

+ % In(4n) +%7/, forall n>n,.

For exemple, if a=0,1= i then
10

24 5 167 , 7 5 514 , 10091 3993
+=——n*+-n-=-n°-

P(n)=—n n— >0,
5 25 5 125 12500 250000

forall n>1, and so
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! +1In(4n)+%7<1+%+...+ ! < L

48(n + 7)2 2 2n —1 48n2
10

+%In(4n) +%}/, forall n>1.

If a=0,01= i, then
100

s (229 Nt _ 163327n3 3 39147691n2 3 1283192741n 3090903

— >0,
1250 12500 5000000 1250000000 2500000000
forall n>16, and so

1 1

1 +£In(4n)+1y<1+1+...+ <—2+1In(4n)+1y, for all n>16.
1y 2 2 3 2n—1 48n* 2 2
48(n+—)
100
Let us remark that a direct calculus shows that these inequalities hold and for
ne{9101112,1314,15}and then
1 1

! +1In(4n)+1y<l+1+...+ <——
48(n +—)? 2 2 3 2n-1 48n
100

12
P(n)=—n
() =>¢

+%|n(4n) +%7, forall n>9,
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