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Abstract
In this paper, we establish a mean value theorem for a real continuous function with several real
variables, using the Frechet semi-differentials of the function.

1. INTRODUCTION

Given a function f: X — R, differentiable, where X is a real normed space, the classical
mean value theorem states that for a,b € X there exists ¢ between a and b such that

f(b)- f(a)=<Df(c),b—-a>.
Many authors have obtained various forms of the mean value theorem in the non-smooth
case, where f is a convex function ([4]) or a lipschitzian function (see egg. [1] or [5]).

In this paper, we establish a mean value theorem for a continuous function

f :R" — R, n> 2, starting from a result obtained in [3] for a real continuous function
f : R — R, using the Frechet semi-differentials of the function.

Let Q = R" be an open subset and x € Q. We recall that f : Q — R is Frechet
differentiable at x if there exists & < R" (denoted by & = Df (x)) such that

i fOEM = FO0-<Eh > _
h0 [l

0 (1)

One of the definitions of the Frechet semi-differentials is the fact that (1) is equivalent on

the conditions that:

fimsup LOHM = T0)-<&n>

<0
e o

and
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e fOCHN) = F)-<&h>

>0.
e [l

Definition 1. Let Q< R" be open, f:Q—>R and xeQ. The

(possibly empty) subset o f (x) = R" defined by

f(x+h)— f(X)-<&h>
b

is said to be the Frechet super-differential of f at x and the (possibly empty) subset

0 f(x)={&eR": Ihirrgsup <0},

o f(x) = R" defined by

f(x+h)— f(X)=-<&h>
[n

07 F(x) ={¢ € R" :liminf > 0},

Is said to be the Frechet sub-differential of f at x.

Now we define o, f(x) =0¢ f(x)Uog f(x) the union of Frechet semi-differentials of f
at x.

The basic properties of the Frechet semi-differential are presented in the following
propositions (see egg. [2] or [6]):

Proposition 1.1. Ifx e Q is a local maximum point for f :Q — R then

0eo; f(x) and if x is a local minimum point for f then 0 € o f (X).

Proposition 1.2. If Q< R" isopen, f :Q — R isacontinuous functionand g:Q — R

is differentiable at x then:
O (f +9)(x) =0¢ f(x) +0rg(X)

O (T +9)(%) = 0r T () + £ 9(X).

Proposition 1.3. Let Q = R"be open, f :QQ — R", X = R" be open
such that f(QQ) < X and g : Q2 — R beacontinuous function. If f isa

local C*- diffeomorfism on Q, then for any x € Q:
Ot (go f)(x)=0¢(g(f(x)-Df(x)
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9 (g e F)(x) = 0¢ (9(f(x))- Df (x).

The following result was obtained by Cringanu ([3]):

Theorem 1.4. Let f : R — R be a continuous function and a,b e R, a<h.
Then there exists ¢ € (a,b) such that

f(b)—f(a)=<0d.f(c),b—a>
so there exists « € 0, f(c) such that

f(b)-f(a)=<a,b—a>.

2. THE MAIN RESULT

Theorem 2.1. Let f : R" — R be a continuous function, a,b &€R",
a=(a,a,,.a,), b=(,Db,,..b)and the following partial functions of f:
f(t) = f(t.by.0,), f,(0) = F(a,t,b,,.0,),.., () = F(ay,8,,.8,4,1).

Then there exists ¢ = (c,,C,,...C,), C, between ax and bk, 1 <k<n, such that

f (b) — f(a)e<f[aka(ck),b—a>

k=1

so there exists
ae H&F f (c), a=(a,a,,.,a,) with o, €01 (c,)
k=1
such that

f (b) - f(a):<a,b—a>zzn:ak(bk—ak).

Proof.
f(b)-f(a)= f(b,b,,.,b,)-f(a,a,,..a,)=[f(b,b,,..,b)-f(a,b,,..b, )]+

+[f(a,,b,,....b)-f(a,a,,..b)]+[f(q,a,,..Db)-f(a,a,,..a,)]=
=[f,(b) - f,(@)]+[f,(by) - f,(a,)]+... + [, (b)) - f,(a,)].
By the theorem 1.4 there exists c, between a, and b,, 1<k <n, such
that
f b)-f.(a)e<o:f(c) b —a >
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so there exists ¢, € 0, f,(c,) such that

f ) - f@)=ab -3a).

Taking ¢ =(c,,¢C,,...c,) and a = (o, @,,...cr,), We Qget

f(b) - f(a)zzn:ak(bk—ak)=<a,b—a>.

References

[1] F. H. Clarke, Optimization and Nonsmooth analysis, Wiley Inter- science, New York,
1984;

[2] M. C. Crandall, P. L. Lions, Viscozity solutions of Hamilton-Jacobi equation, Trans. A.
M. S., 277, 1-42, 1983;

[3] J. Cringanu, Mean value theorem for real continuous functions, The Annals of the
University Bucuresti, Mathematics, Year XLV (1998), No. 1,41-44;

[4] J. B. Hiriat-Urruty, Mean value theorems in nonsmooth analysis, Nu- mer. Funct. Anal.
Optim. 2, 1980, 1-30;

[5] M. G. Lebourg, Valeur moyenne pour gradient generalise, C. R. Acad. Sci. Paris, 281,
1975;

[6] S. Mirica, V. Staicu, N. Angelescu, Equivalent definitions and basic properties of Frechet
semi-differentials, Prepind n. 6/1986-1985, Instituto Mat., "U. DINI” Firenze, Italy.

42



