ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI MATHEMATICS, PHYSICS, THEORETICAL MECHANICS FASCICLE II, YEAR XIV (XLV) 2022, No. 2 DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2022.2.01

Mean value theorem for a real continuous function with several real variables

Jenică Crînganu

"Dunărea de Jos" University of Galati, Faculty of Science and Environment, Department of Mathematics and Computer Science, 111 Domneasca street, Galati, Romania e-mail: jcringanu@ugal.ro

Abstract

In this paper, we establish a mean value theorem for a real continuous function with several real variables, using the Frechet semi-differentials of the function.

1. INTRODUCTION

Given a function $f: X \to R$, differentiable, where *X* is a real normed space, the classical mean value theorem states that for $a, b \in X$ there exists *c* between *a* and *b* such that

$$f(b) - f(a) = \langle Df(c), b - a \rangle$$

Many authors have obtained various forms of the mean value theorem in the non-smooth case, where f is a convex function ([4]) or a lipschitzian function (see egg. [1] or [5]). In this paper, we establish a mean value theorem for a continuous function $f_{i} = D_{i} = 0$

 $f: \mathbb{R}^n \to \mathbb{R}, n \ge 2$, starting from a result obtained in [3] for a real continuous function

 $f: R \rightarrow R$, using the Frechet semi-differentials of the function.

Let $\Omega \subset \mathbb{R}^n$ be an open subset and $x \in \Omega$. We recall that $f : \Omega \to \mathbb{R}$ is Frechet differentiable at x if there exists $\xi \in \mathbb{R}^n$ (denoted by $\xi = Df(x)$) such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \langle \xi, h \rangle}{\|h\|} = 0$$
(1)

One of the definitions of the Frechet semi-differentials is the fact that (1) is equivalent on the conditions that:

$$\lim_{h \to 0} \sup \frac{f(x+h) - f(x) - \langle \xi, h \rangle}{\|h\|} \le 0$$

and

$$\liminf_{h \to 0} \frac{f(x+h) - f(x) - \langle \xi, h \rangle}{\|h\|} \ge 0.$$

Definition 1. Let $\Omega \subset \mathbb{R}^n$ be open, $f: \Omega \to \mathbb{R}$ and $x \in \Omega$. The (possibly empty) subset $\partial_F^+ f(x) \subset \mathbb{R}^n$ defined by

$$\partial_F^+ f(x) = \{ \xi \in \mathbb{R}^n : \limsup_{h \to 0} \sup \frac{f(x+h) - f(x) - \langle \xi, h \rangle}{\|h\|} \le 0 \},\$$

is said to be the Frechet super-differential of f at x and the (possibly empty) subset

 $\partial_F^- f(x) \subset \mathbb{R}^n$ defined by

$$\partial_F^- f(x) = \{ \xi \in \mathbb{R}^n : \liminf_{h \to 0} \frac{f(x+h) - f(x) - \langle \xi, h \rangle}{\|h\|} \ge 0 \},\$$

is said to be the Frechet sub-differential of f at x.

Now we define $\partial_F f(x) = \partial_F^+ f(x) \cup \partial_F^- f(x)$ the union of Frechet semi-differentials of f at x.

The basic properties of the Frechet semi-differential are presented in the following propositions (see egg. [2] or [6]):

Proposition 1.1. If $x \in \Omega$ is a local maximum point for $f : \Omega \to R$ then

 $0 \in \partial_F^+ f(x)$ and if x is a local minimum point for f then $0 \in \partial_F^- f(x)$.

Proposition 1.2. If $\Omega \subset \mathbb{R}^n$ is open, $f : \Omega \to \mathbb{R}$ is a continuous function and $g : \Omega \to \mathbb{R}$ is differentiable at *x* then:

$$\partial_F^+(f+g)(x) = \partial_F^+f(x) + \partial_F^+g(x)$$
$$\partial_F^-(f+g)(x) = \partial_F^-f(x) + \partial_F^-g(x).$$

Proposition 1.3. Let $\Omega \subset \mathbb{R}^n$ be open, $f : \Omega \to \mathbb{R}^n$, $X \subset \mathbb{R}^n$ be open such that $f(\Omega) \subset X$ and $g : \Omega \to \mathbb{R}$ be a continuous function. If f is a local C^1 - diffeomorfism on Ω , then for any $x \in \Omega$:

$$\partial_F^+(g \circ f)(x) = \partial_F^+(g(f(x)) \cdot Df(x))$$

$$\partial_F^-(g \circ f)(x) = \partial_F^-(g(f(x)) \cdot Df(x)).$$

The following result was obtained by Cringanu ([3]):

Theorem 1.4. Let $f : R \to R$ be a continuous function and $a, b \in R$, a < b. Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = \langle \partial_F f(c), b - a \rangle$$

so there exists $\alpha \in \partial_F f(c)$ such that

$$f(b) - f(a) = \langle \alpha, b - a \rangle.$$

2. The main result

Theorem 2.1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function, $a, b \in \mathbb{R}^n$,

 $a = (a_1, a_2, ..., a_n), \quad b = (b_1, b_2, ..., b_n) \text{ and the following partial functions of } f:$ $f_1(t) = f(t, b_2, ..., b_n), \quad f_2(t) = f(a_1, t, b_3, ..., b_n), ..., \quad f_n(t) = f(a_1, a_2, ..., a_{n-1}, t).$

Then there exists $c = (c_1, c_2, ..., c_n)$, c_k between a_k and b_k , $1 \le k \le n$, such that

$$f(b) - f(a) \in < \prod_{k=1}^{n} \partial_{F} f_{k}(c_{k}), b - a >$$

so there exists

$$\alpha \in \prod_{k=1}^{n} \partial_{F} f_{k}(c_{k}), \alpha = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) \text{ with } \alpha_{k} \in \partial_{F} f_{k}(c_{k})$$

such that

$$f(b) - f(a) = \langle \alpha, b - a \rangle = \sum_{k=1}^{n} \alpha_{k} (b_{k} - a_{k}).$$

Proof.

$$f(b) - f(a) = f(b_1, b_2, ..., b_n) - f(a_1, a_2, ..., a_n) = [f(b_1, b_2, ..., b_n) - f(a_1, b_2, ..., b_n)] + (a_1, b_2, ..., b_n) - (a_1, b_2, ..., b_n) = [f(b_1, b_2, ..., b_n) - f(a_1, b_2, ..., b_n)] + (a_1, b_2, ..., b_n) - (a_1, b_2, ..., b_n) = [f(b_1, b_2, ..., b_n) - f(a_1, b_2, ..., b_n)] + (a_1, b_2, ..., b_n) - (a_1, b_2, ..., b_n) = [f(b_1, b_2, ..., b_n) - f(a_1, b_2, ..., b_n)]$$

$$+[f(a_1,b_2,...,b_n) - f(a_1,a_2,...,b_n)] + [f(a_1,a_2,...,b_n) - f(a_1,a_2,...,a_n)] =$$

= [f_1(b_1) - f_1(a_1)] + [f_2(b_2) - f_2(a_2)] + ... + [f_n(b_n) - f_n(a_n)].

By the theorem 1.4 there exists c_k between a_k and b_k , $1 \le k \le n$, such that

$$f_k(b_k) - f_k(a_k) \in \langle \partial_F f_k(c_k), b_k - a_k \rangle$$

so there exists $\alpha_k \in \partial_F f_k(c_k)$ such that

$$f_k(b_k) - f_k(a_k) = \alpha_k(b_k - a_k).$$

Taking $c = (c_1, c_2, ..., c_n)$ and $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$, we get

$$f(b) - f(a) = \sum_{k=1}^{n} \alpha_{k} (b_{k} - a_{k}) = \langle \alpha, b - a \rangle.$$

References

- [1] F. H. Clarke, *Optimization and Nonsmooth analysis*, Wiley Inter- science, New York, 1984;
- M. C. Crandall, P. L. Lions, Viscozity solutions of Hamilton-Jacobi equation, Trans. A. M. S., 277, 1-42, 1983;
- [3] J. Cringanu, *Mean value theorem for real continuous functions*, The Annals of the University Bucuresti, Mathematics, Year XLVII (1998), No. **1**, 41-44;
- [4] J. B. Hiriat-Urruty, *Mean value theorems in nonsmooth analysis*, Nu- mer. Funct. Anal. Optim. **2**, 1980, 1-30;
- [5] M. G. Lebourg, Valeur moyenne pour gradient generalise, C. R. Acad. Sci. Paris, 281, 1975;
- [6] S. Mirica, V. Staicu, N. Angelescu, Equivalent definitions and basic properties of Frechet semi-differentials, Prepind n. 6/1986-1985, Instituto Mat., "U. DINI" Firenze, Italy.