ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI - FASCICLE 11

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
MATHEMATICS, PHYSICS, THEORETICAL MECHANICS
FASCICLE II, YEAR XIV (XLYV) 2022, No. 2
DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2022.2.02

On the Hilbert function of vertex cover algebras
of Cohen-Macaulay bipartite graphs

Cristian Ion

“Dunarea de Jos” University of Galati, Faculty of Sciences and Environment,
111 Domneasca street, 800201 Galati, Romania
Corresponding author: cristian.adrian.ion@gmail.com

Abstract
We study the /1 — vector and the Hilbert function of the vertex cover algebra A(G) , introduced and first studied

by J. Herzog, T. Hibi and N. V. Trung ([6]), for a special class of bipartite graphs, namely for Cohen-Macaulay
bipartite graphs.
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1. INTRODUCTION

In the first part of the paper, we introduce the definitions and the concepts that we operate with
and we fix the notation exactly as we did it in [3]. Let G =(V,E) be a simple (i.e. finite, undirected,

loop less and without multiple edges) graph with vertex set V' = [n] and the edge set £ =F (G) A
vertex cover of G is a subset C V' such that C M {i,j} # @, for any edge {i,j} € E(G) A vertex
cover C of G is called minimal if no proper subset C'c C is a vertex cover of G . A graph G is
called unmixed if all minimal vertex covers of G have the same cardinality. Let R = K [xl,xz,...,xn]
be the polynomial ring in n variables over a field K. The edge ideal of G is the monomial ideal
1(G) of R generated by all the quadratic monomials x,x; with {i ,J } ek (G) It is said that a graph

G is Cohen-Macaulay (over K) if the quotient ring R/I(G) is Cohen-Macaulay. Every Cohen-
Macaulay graph is unmixed.
A vertex cover C C [n] can be represented as a (0,1)-Vect0r c¢ that satisfies the restriction

c(i)+ c(j)Z 1, for every {i,j} € E(G) For each k € N, a vertex cover of G of order k , or simply
k -vertex cover of G is a vector ¢ € N" such that ¢(i)+ c(j)> k, for every {i, j} € E(G). The vertex
cover algebra A(G) is defined as the subalgebra of the one variable polynomial ring R[t] generated
by all monomials x;" x5 ...x,f"tk , Where ¢ = (cl,cz,...,cn ) € N"is a k -vertex cover of G . This algebra

was introduced and first studied in [6].

Let m be the maximal graded ideal of R . The graded K -algebra Z(G)z A(G)/ mA(G) is
called the basic cover algebra and it was introduced and first studied in [5, Section 3].
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Our aim in this paper is to study the % — vector and the Hilbert function of the vertex cover
algebra A(G) for Cohen-Macaulay bipartite graphs.

Let P, ={p,, Py»-np,} be a poset with partial order <. Let G = G(P,) be the bipartite
graph on the set V, =W UW', where W = {xl,xz,...,xn} and W = {yl,yz,...,yn}, whose edge set
E(G) consists of all 2-element subsets {xl., y j} with p, < p,. It is said that a bipartite graph on
V. =W UW comes from a poset , if there is a finite poset P, on {pl,pz,...,pn} such that p, < p;

implies i < j and after relabeling of the vertices of G one has G = G(P,) . Herzog and Hibi proved

in [4, Theorem 3.4] that a bipartite graph G is Cohen-Macaulay if and only if G comes from a poset.
Example 1.1. Let P, = {pl,pz,p3} be the poset with p, < p,. The Hasse diagram of P, is
represented in the next figure:

P2

P1 P3

Fig. 1

The graph G = G(P3) is represented geometrically in the next figure:

X3 Y3
X2 y2
X1 Y1
G=G(P3)
Fig. 2
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In this respect, by [6, Lemma 4.1, Theorem 5.1.b], the vertex cover algebra A(G) is standard

graded over S and it is the Rees algebra of the vertex cover ideal [, which is generated by all

: €1 ,.C2 Cn 1,Cn+l 4,Cn+2 Can _ —
monomials Xl )C2 ...xn yl J’z yn . where the (01) vector C—(C],Cz,.. c ,C C .,Czn) 1S

R T+l T n+20
a 1 —vertex cover of the graph G .
By [5, Lemma 2.1], there is an one-to-one correspondence between the set M (G) of all

minimal vertex covers of G and the lattice / (F;) of all poset ideals of P,. Thus, it can be assigned to

each minimal vertex cover of G the poset ideal o, = {pi |x, eC } Conversely, if « is a poset ideal

of P , then the corresponding set C, = {xl. | p; € Ot} U {y | p, ¢ a} is a minimal vertex cover of G .
Let P, be the poset from the Example 1.1. The set of all minimal vertex covers of G is:

M(G): {{y1ay2ay3}a{x1:J’2»y3}’{x3:J’1’y2}a{xl’xza%}a{x1>x3:y2}’{x1»x2:x3}}’
and the lattice of all poset ideal of P, is:

1(R) = {@.\p b Ap: b pis 2} A 2 AP 2o 3}
The distributive lattice (I (P3 ), C) is represented graphically in the next figure:

{p19p29p3}

{p1.p3}

{p1.p2}

{ps}

{p1}

Fig. 3

In Section 2, we study the /& —vector and the Hilbert function of A(G). We assign to each
poset P = {pl, Doseees pn} such that p;, < p, implies /< j a simplicial complex A, on the set
[n]u] (Pn) whose Stanley-Reisner ideal coincides with the initial ideal of the toric ideal O, of
A(G) with respect to a suitable monomial order. (See [4, Section 1] for the definition and the
properties of the toric ideal of A(G)). The simplicial complex A P, plays a key role in the outline of
the paper because the /4 — vector of A(G) is equal to the / —vector of A p, - As it was proved in [3,
Proposition 1.2], the K —graded algebra Z(G) and the order complex A(I (BI)) have the same

h —vector. (See [1], [5, Section 3] for the definition and the properties of the basic cover algebra
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associated to a graph and [2, §5.1] for the definition and the properties of the order complex of a
poset).

For each subset F' [n], F# [n] we denote by Pn(F) the subposet of P, induced by the
subset {pi lig F } and by G the bipartite graph that comes from ﬂ(ﬁ) Let A(I (R, (F))) be the

order complex of the distributive lattice / (Pn (F)) If F = [n] then, by convention, A(I (Pn (F)))=(D

The main result of this paper is given in Theorem 2.2, which proves that one may reduce the
computation of the f — and s —vectors of the simplicial complex A, and, consequently, the

h —vector of A(G) to the computation of f F— and h" —vectors of the simplicial

complex A([ (Pn (F))) and, consequently, the % —vector of the basic cover algebra Z(Gf), for all
Fc [n] Namely, we get the following formulas:

J _
fj_1=z Zfﬁ,_],forall 1<j<n+l,
£

1=0 Fc[n
|F|=t

J _
hjzz Zhﬁ,,forall 1<j<n+1.

=0 Fc[n]
|F|=

2. THE /h—VECTOR AND THE HILBERT FUNCTION
OF VERTEX COVER ALGEBRAS OF COHEN-MACAULAY BIPARTITE GRAPHS

In the first part of this section, we recall some definitions and results concerning the toric ideal
O, of the vertex cover algebra A(G) as they were given in [4]. That will allow us to introduce the

simplicial complex A, , which was already mentioned in the previous section.
Let S=K [xl,xz,...,xn, VisVoseeos yn] be the polynomial ring in 27 variables over a field K
and let G =G(P,), where P, = {pl,pz,...,pn} is a poset such that p, < p; implies i < j. For each

CeM (G), we denote m, = [Hle[H yj.]. Since G is Cohen-Macaulay, it is also unmixed,

x;eC y;eC
hence |C| =n and degm, =n, forall C € M(G).
We denote B, = K[{x, }lSiSn,{yj }ISan’{ua }aeI(Pn)]. The toric ideal O, of A(G) is the kernel

of the surjective homomorphism @ : B, — A(G) defined by (D(xl.) =X, q)(yj)z Vs (I)(ua ) =m,t,

where m,, = {Hxi}-LHyj].

pica pga

Let < ] induced by the ordering

lex

denote the lexicographic order on K[{xi }13,-91:{3’1' }1<j<n

X, >X, >.>x, >y >y, >..>y and <" the reverse lexicographic order on K[{ua }ae[(m]

induced by an ordering of the variables u,’s such that u, >u, if fca in [ (Pn) Herzog and Hibi

introduced in [4] the new monomial order </ on B, defined as the product of the monomial orders
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<, and <" from above. The reduced Grobner basis Gr of the toric ideal O, of A(G) with respect
to the monomial order <!

Gr= &—yjuau{pj},je[I’l],aE](fZ),pj ¢0€,0€U{pj}e [(Rq),
uauﬁ—uauﬁumﬂ,a,ﬂePn,a¢ﬂ,ﬂ¢a},

where the initial monomial of each binomial of Gr is the first monomial.

on B, was computed in [4, Theorem 1.1]:

Let A, be the simplicial complex whose Stanley-Reisner ideal [ A, coincides with
in<§; (QG) Thus A, is the simplicial complex on the set [n]U 1 (Pn) whose faces are:

FU(L \ {a el| (El)j € F suchthatp, ¢ aand o'V {pj}e I(Pn)}),
where ' [n] and L is a chain of I(Pn).

In order to identify the facets of A p WE need to make the following remark.

Because / (Pn) is a full sublattice of the Boolean lattice BL, on the set {pl, DPoseens pn}, (s,
Theorem 2.2]), then for each maximal chain L, of / (Pn) and for each p, e P, 1<i<n, thereis a
unique poset ideal @, €L, suchthat p, ¢¢,, and ¢, u{ l.}e L, . Moreover, if p, # p, then
@, #a;, and {al_] R }c {a el | (El)j € Fsuch thatp, ¢ aand o\ {pj}e I(Pn )}

Therefore, the facets of A p are either the maximal chains L of [ (ﬂ) or the faces of the
form

FU(L, e, lieF)),0=F c[n),
with the property that
ra eL,|(3) e Fsuch thatp, ¢ ccand @ U {pj.}e I(Pn)}= {ai,Lm |ie F}.

Since all maximal chain of / (Pn) have the same length n, it follows that A, is a pure
simplicial complex of dimA, =n.

Let us recall the poset P, = {pl, Dys p3} from the Example 1.1. Then A p, 1 a 3-dimensional
simplicial complex on [3]U 1 (1’3) Let L, be the maximal chain {0, {p1 }, {pl, D, }, {pl, Dy Ds }} of
I(Pz») Therefore o, =0, @, = {pl} and a5, = {pppz}'

If we put F' = {1,2}, then

{a e L |(3)j e{l,2} such thatp; & aand a0 U {pj}e 1(133)}: 0.{p,}}
and thus E, = {1,2}U {{p],p2 }, {pl,pz,p3 }} is a facet of the simplicial complex A, since
{al,Ll &1, }: {Q’ {pl }}

If we put F' = {1,3}, then

{a el | (El)j € {1,3} such that p, ¢ a and o\ {p‘j}e [(1’3)}= {@, {pl }, {p],p2 }}
and thus E, = {1,3}U {{pl, D> Ds }} is a face of the simplicial complex A P> but it is not a facet of
A o since {al, 1%, }C {@, {pl }, {pl, D, }} We notice that £, is contained in the maximal face
(facet) E; ={1.2.3}U{{p.. po. 1 J}-

Lemma 2.1. Let P, = {pl,pz,...,pn}, n =1, be a poset such that p, < p, implies i < j. Let
E=FUL be a face of the simplicial complex A p » Where F C [n] and L0 .1f a,f € L such

that amﬂ(ﬁ)=ﬂmPﬂ(F>, then a = 3.
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Proof. If =0, then ﬂ(ﬁ): P ,whence a = f3.

If F =[n], then, by the definition of A, , it follows that L = {p,, p,...., p, |. Hence & = 3.

We may assume @ < F' [n] We show that fca and a C f.

Let us suppose, on the contrary, that & o . Then there is some p, € f\a. If 1, ¢ F, then
p, €PN P,,(F) Since a N P, (1?): BN PL(I?), it follows that p, € o, which is a contradiction to
the choice of p, . Hence 7, € F' and p, & «. By the definition of A p-if @€l and p, ¢ a, then
auv {prl }gE 1 (Pn), which implies that there is p, € F, suchthat p, < p, and p, €U {pr1 }, that
means p, ¢« and p,_#p . Since k, p, €f and p_<p, , it follows that p, € /. Thus
p,ePB\a.

By repeated application of this argument, we get the following strictly decreasing sequence
w<p, <p, <..<p, <p,,where p € B\, for all k>1. The sequence is not stationary,

hence the set {, Dy Dy s Drs Py, } is infinite, which is a contradiction, since
{...,prk+I 2Dy ses Pr s Py, }C Bl\ac {pl,pz,...,pn}. Hence fc .
Similarly, we can show that & < . Hence o = 5.

The main result of the paper relates the & — vector of A(G) to the & — vector of Z(GF), for all
Fc [n] If F= [n], then, by convention, f ') and A" are the f — and h—vectors of the order
complex A(I (Pn (m))) = {@}

Theorem 2.2. Let f =(f,,f,.... f,) and h=(hy,h,.....h,h, ), respectively, fﬁ and
A7 be the S — and h—vectors of the simplicial complex A, and, consequently, the 4 — vector of
A(G), respectively, of the simplicial complex A(I (Pn (F))) and, consequently, the
h —vector of Z(GF), forall ' [n] Then the following relations hold:

J

o= S forall 1< j<n+1,
]

=0 Fc[n
|F|=1

J _
h.:z Zhﬁ,,forall I<j<n+l.

Proof. The proof of the theorem is quite technical. In order to establish which are the
main steps, we begin with a sketch of the proof. The main idea is to define a bijective map from

the set of all (j—l)—dimensional faces £ €A, of the form E=FUL, with F < [n], F| =/,
L a chain of A(I(EI )) of length j—/—1, on the set of all couples (F,L(f)), with F [n],
|F|:l, L(f) a chain of A([(PH(F))) of length j—7/—-1, for each 1< j<n—1 and for each

0</< min{j,n}. We denote this bijection by A = ﬂ(j,l).

In the first step, we show that A is well-defined. Secondly, we prove that A is injective,
which is essentially based on Lemma 2.1. Finally, in the most technical part of our proof, we
show that A is surjective.

The map A is defined as follows:
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if E=F UL isaface of A P that satisfies all required conditions, then /1(E ): (F ,L(f)),
where
(i) L(F)=0,it L=0;
(i) L(F)=1{0}.if L#© and F =[n]:
(iii) L(F)={a P (F)|a e L}, if L %@ and F #[n].
Step 1. We show that A is well-defined.

If E=F, then L=0. In this case L(F)z@eA(](ﬂ(F))) and both L and L(F) are
chains of length -1.
If E#F, then L#@. Put L=lg, .0, ... | wih o Ca, c.Ca, . Let

B, =a, AP(F) forall 1<i<j—I.Then L(F)={8 |1<i< j-1}.

We claim that 3, € I(R, (F)), forall I<i<j—/.

If F= [n], then /=n, j=[+1 and L= {{pl,pz,...,pn}}. In this case L(F): {0}, hence
L(f) is a chain of [/ (ﬂ (F)) of length 0.

Now, we may assume that [ # [n] Let p,€f, and p, €P, (F) with p, < p, in Pn(F)
Obviously, p, < p, in P,. Since , €1 (P) and p, € B, , it follows that p, € @, . Hence p, € 3, ,
which shows that 5, €/ (Pn (f)), forall 1<i< j—1[.Obviously, §, < B, forall 1<i<j—I-1.

Now, we prove that L(F)z {,B,1 B s B, ]}, B, cp, c..c ﬁt,,, , 1s a chain of [ (Pn (f))

J=

of length j—/—1. Let us suppose that there is some 1<i< j—/—1 such that §, =/ . Since

B =a, (\Pn(F), B =a. mPn(F), it follows, by Lemma 2.1., that ¢, =«, , which is a
contradiction. Hence f, < f, ,forall 1<i<j—/-1.

Step 2. We show that A is injective.

Let £ and E two faces of A, with E=FUL, E=F UL, E|:j, E":j',

ISj,j'£n+1, Fc[n], F'C[n],

Fl=1,0<i<min{j,n}, [F|=1, 0</ <min}j nf. L and
L chains of A(I (Pn )) of length j—/—1, respectively, j —I —1, such that /I(E ) = Z(E ) We prove
that E=E .

Since (F,L(F)):(F',L(F», it follows that F =F, L(F):E(F):L(F), =1 and
J=J-

If L=Q,then E=F and j=1I.Hence L =@ and E=E .

Now, we may assume that L #@, which implies that j>/ and L #@. Put

L= {at'l,at'z,...,a;jil} with ¢, c e, c..ce, . Then E(F)= {at'[ AP(F)1<i< j—l}. Since
L(f) and L (F) are chains and L(F): L (F), it follows that a, ﬁPn(F)z a;i ﬂﬂ(F ), for all
I<i<j-1.ByLemma2.l. «, :a;i ,forall 1<i< j—/,whichimplies that L =L .

Hence E=FUL=F UL=E.

Step 3. We show that A is surjective.
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Let (L,L(f)) be a couple such that F' [n], F| =/,0<I< min{j,n} and L(f) is a chain
of I(Pn (F)) of length j—1/—1.

If L(F)z@,then j=1.Put L=@ and E=FUL.Then E is a face of A, with |E|=j,
L is achain A(/(P,)) of length —1 and A(E)= (F,L(f)).

We may assume that L(F);t 9.

If F=0,then /=0and P,(F)=P,. Put L=L(F)e A(I(P)) and E=FUL. Then E is
a face of A, with |E| =j and /1(E): (F,L(f)).

If F=[n], then A(I(Pn (F)))= {0}, I=n and j=n+1. Hence L(_)z {0}. Put
L= {{pl,pz,...,pn}} and E=F L. Then E is a face of Ap with |E| = j and A(E): (F,L(F)).

Therefore, we may assume that @ c F c[n] and L(F): {ﬂtl B sees ﬂtH} with

B, < p, <..cp, . We show that for each 1<i < j—/, there is some subset y, {p,luecF}
such that S Uy, € I(Pn) Namely, if we choose y, = {pu lue F,(El)pv € B, withp, < p, },
B, Oy, €l(P,), forall 1<i<j—1.
Indeed, let p, € B, Uy, and p, € B, with p, < p,. We must analyze the following cases:
Case 1. p,ef, . 1If beF, then p,ey, . If beF, then Dy ePn(f) and p, < p, in
Pn(f) Since S, €1 (Pn

F ), it follows that p, € f3, .

Case 2. p, €y, . By the definition of y, , there is some p, € ﬂt,- with p, < p.. Therefore
py<p.. It beF, then p,ey, . If bgF, then p, eﬂ(ﬁ) and p, <p. in f;(F) Since
B el (Rl (F)), it follows that p, € £, .

For each 1<i<j—/, we choose o, {p,lueF} to be a maximal subset such that
7, €6, and f, U6, € I(P,). We put a =p, Vb, ,1<i<j—l,and L= {atl T AN }

We claim that &, C ¢, C...C ¢, , which implies that L e A(I (Pn )) and the length of L is
exactly j—/—-1.

We show that ¢, c ¢, ,forall 1<i<j—/-1.

Let us suppose, on the contrary, that there is some 1<i< j—/—1 with a, «a, . Then
there is some p, e€q, \a, . Obviously, p, € {pu lueF }, otherwise, if p, € P, (F), then
p,€P, <P, -Sincea, =p VO, ,itfollowsthat p, €, ,whichisa contradiction.

By the choice of 6, , a, €l (Pn) and o, U {prl }‘eE I (f;) Then there is some p, € F,
such that p, <p, and p ¢oa, U {prl }, which implies that p, ¢, and p, # p, . Hence
a €l (Pn), p, €a, and p, <p, ,whichimplies that p, €, .

By repeated application of this argument, we get an infinite sequence strictly decreasing
w<p, <p, <..<p, <p,,where p. ea, \q, ,forall k>1.The sequence is not stationary,

hence the {, Dy sDy s Dy s Dy, } is infinite, which is a contradiction.
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We obviously get @, c ¢, , forall 1<i< j—/—1.If there is some 1<i< j—/—1 with
o, =a, ,then B =pf , whichisa contradiction.

Put L= {atl N ,...,alH} and E=FUL. We notice that, for each p, € F' and for each
a €L, either p, e, or,if p, & a, then au{pk}EI(Pn). Hence E is a face of A, with |E|:
and A(E)=(F,L(F)).

By the definition of A p » the vertex cover algebra A(G) and the simplicial complex A p have

the same f — and /& —vectors. As we already noticed in Remark 3.2, the basic vertex cover algebra

Z(Gf) and the simplicial complex A(I (Pn (F ))) have the same f — and 4 — vectors, for all /' [n]
Hence, by using the bijective map A, we get:

J _
:Z Zfﬁ,,l,forall 1<j<n+l.

=0 Fc[n]
\F=1

By the formulas that relate the 4 —vector to the f —vector of a simplicial complex (see [2,

Lemma 5.1.8], we get:

s (s (g2

J Wi i n+l-[1-1i 7 J 7 .
=331 , VAT Zhjfl,fora111£]£n+l.
i J_l_l l:OFC[n]
|F|=t |F|=i
Let P, = {pl, Dss p3} be the poset from Example 1.1. Then the simplicial complex A p, onthe
set [3]UZ(P,) hasthe f —vector (9,26,30,12)(ie. £, =9, f, =26, f, =30, f,=12).
Thus, the Hilbert series of 4(G) is:

Hyo ()= LAl e G

C(1-2)'+92(1-z) +262°(1-2) +302°(1—z)+12z* 2’ +52° +5z+1

) (1-2) =2
Hence the & — vector of A(G) is (1,5,5,1,0) (ie. hy=hy=1, hy=h,=5, h, =0).
Finally, the Hilbert function of A(G) i

oo (7 on (o (2 3

6+k 5+k 4+k 3+k
= +5. +5. + e e e B B
k k-1 k-2 k-3) 60 5 3 60 15

forall k>0.
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