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Abstract 

In this paper, we propose to study the numerical integration of Cauchy's problem (PC-in short) for a system of 
differential equations of the first order by the method of successive approximations and the method of the 
polygonal line, the best known in practice. For example, the methods are applied to some particular functions. 
The novelty of this paper consists, mainly, in the translation of existing approximation methods into C++ code, 
in order to visualize the results including the graphic image of  both approximate and exact values trajectories, 
for comparison. 
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1. INTRODUCTION  
 
Following the well-known theory of numerical integration for Cauchy's problem of the first 

order systems of differential equations, we are going to codify some of the best-known methods of 
approximating the solutions, and obtain as accurate values as possible. 

Consider PC for a normal differential system [2][3]: 
 0 0( ) ( )y f x y y x y       (1) 

where 1 m mf   , 1m  , is a continuous function in a domain 1 mD  , which contains the 

given point 0 0[ ]x y . Since D  is an open set, contains a neighborhood P I V  , with  

 0 0{ } { }mI x x x V y y y             
where PC(1) is equivalent to the integral equation 

 
0

0( ) ( ( ))
x

x
y x y f t y t dt x I       (2) 

If we note with ( )( )Ty x  2nd term in (2), we arrive at a fixed point problem, y Ty , to which 
we can apply the principle of Picard-Banach contractions. We get thus 

Theorem. (Picard) Let ( )f C P  satisfying Lipschitz's condition in y , i.e.,  

 ( ) ( ) [ ] [ ]f x y f x z L y z x y x z P              
 

2. APPROXIMATION METHODS: MAS AND EULER’S POLYGONAL LINE  
 

The PC(1) admits a unique solution, ( )y y x ([1][2][3]) defined and continuous on the 

interval 0 0( )x k x k   , where min( )k M     with sup{ ( ) [ ] }M f x y x y P      , to 

which the method of successive approximations (MAS-in short) converges: 
 0 0 1( ) 1n ny y x y Ty n       
Before moving on, some remarks on the assumptions of the theorem are necessary. Thus, to 

fulfill Lipschitz's condition, it is enough to assume that ( )y C Pf   , because, P  being a relatively 
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compact set, exists sup{ [ ] }yL x y Pf       and, with Lagrange formula, we have:  

 1 2 1 2 1 2( ) ( ) sup{ ( )( ) [ ] }yf x y f x y x y y y x y P L y yf                  
 

Changing  x  with y , that is, looking for form solutions like ( )x x y , we can ask for a 

Lipschitz condition in x with the same effect. Moreover, we can establish the existence (sometimes 
uniqueness) without f fulfilling a Lipschitz condition in one of the arguments. Still, it is necessary to 
ask  f for more than simple continuity (see Peano's theorem). 

Finally, the interval of existence and uniqueness, 0 0( )x k x k   , is not a maximal interval, 

MAS being able to converge on larger intervals as it is revealed from 

Example 1. PC: 21 (0) 0y y y      has the solution y xtg  and it can be shown that MAS 

converges for 2x   . However, from the theorem we have: 2 2( ) 1 1f x y y M        so 

that 21
k 


 , which has a maximum, 1

2maxk   for 1  . Thus, the theorem guarantees the 

convergence of MAS only for 1
2x  .  In practice, MAS is used only in extreme cases because its 

numerical realization requires the calculation of integrals, and its convergence is generally slow. 

Example 2. PC: 1)0(y,e2yy x'   has also solution. Integrated as a linear PC of the order I  

we get the solution xy e . We apply MAS with the initial approximation 0 ( ) 1Y x   and show that 

lim ( ) ( )nY x y x , in which ( )nY x  is the explicit solution obtained at step 1n  .  

We are lead to: 

 1 10 0
1 (2 ( )) 2 1 ( )

x xt x
n n nY e Y t dt e Y t dt           n

0i
x

i!

x
2e , n=2p-1. 

It results: y(x)elimY x
n  , uniform on R . 

 To establish the existence and uniqueness of the solution on an interval 
[ ]a b   , which contains 0x , the MAS theory is completed by Euler's polygonal line method, 

which constructs a function ( )Y x   uniformly approximating the exact solution([2][3]).  

It is considered an equidistant division of the interval 0( [ ])J x b   on right of 0x , i.e., 

0ix x ih  , 0 i n  , with 0h   small enough; (for the interval H  to the left of 0x  it is 

recommended the variable change x t   and the similar procedure). Note with ( )iy y x , the 

values of the exact solution ( )y x  in the nodes ix , and with iY  the values of an approximate solution 

calculated in these nodes. Approximating the derivative with the incremental ratio we have 

 
( ) ( )

( ) ( ( ))
y x h y x

y x f x y x
h

      

 
and it is led to define the iteration: 0 0 1 ( ) 0 1i i i iY y Y Y hf x Y i n           (3) 

which gives us the values of the approximate solution ( )Y x  in the nodes ix .  

 
In the other points ix x  it is defined the approximate solution ( )Y x  as a linear function that 

joins the points [ ]i ix Y  şi 1 1[ ]i ix Y  , meaning: 

 

 1
1 1

1

( ) ( ) ( ) [ ]i i i
i i i i i i i

i i

x x Y Y
Y x Y Y Y Y x x x x x

x x h


 


 
         


 (4) 

Let 0   chosen small enough to have 

 1{[ ] ( ) }mB x y y y x D          
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Assuming there is a solution ( )y x  if is proven that ( ) ( )y x Y x    , x J  , it results the 

the existence of ( )Y x , which was shown in the previous construction, which implies the existence of 

the exact solution on J . 
Let sup{ ( ) [ ]yL x y x y Bf        and 0   so that:  

 

 0( )( 1)b x Le
L

      (5) 

 
Because the function ( ) ( ( ))x f x y x    is uniformly continuous on J , there exists ( ) 0    such 

that x x J   , and x x      determine ( ) ( )x x      . The next sentence is also known in 

the specialty literature: 
“If h  , then [ ]i ix Y B  , 0 i n   and ( ) ( )y x Y x    , x J  ” 

For the proof, the procedure is the induction on 0i  . We start with 0i  . It results 0 0[ ]x Y B   

because 0 0 0( )Y y y x  . Assuming that 0 0[ ] [ ]i ix Y … x Y B      and 1nx b  , for compare 1iy   with 

1iY   it can be calculated the difference  

 
1

1 ( ( )) ( )
i

i

x

i i i i ix
y y f t y t dt hf x y r



         

with:  

 
1

( ( )) ( )
i

i

x

i i ix
r f t y t f x y dt h          

 
So:   1 1 [ ( ) ( )]i i i i i i i i iY y Y y h f x Y f x y r          and, with the Lagrange formula, we are led to: 

  
 1 1 ( ) (1 )i i i i i i i i i i iyY y Y y h x Y y r hL Y y hf                           
 

By repeated applications: 
1

1
1 1 0 0

0

(1 ) 1
(1 ) (1 )

nn
n i

n n
i

hL
Y y hL Y y h hL h

hL
 




 


 
            

 

Taking into account that 1hLe hL   and 1 0 ( 1)nx x n h b     , so 0( 1) b x
hn   , it results: 

 

                                                         0( )1(1 ) b x LnhL e   .  

Consequently: 

 0( )
1 1 ( 1)b x L

n nY y e
L

 
        

which involves 1 1[ ]n nx Y B   . It was thus shown that for any nx b  we have ( ) ( )Y x y x    , 

x J  , knowing that Y  and y  are uniformly continuous functions on J .  
 

3. CODIFICATION OF EULER’S METHOD 

We will present next, a codification for the application of Euler's method, previously 
explained. Applying Euler's method on the interval [0,1] , or or any interval included in it, we can 

approximate the solution of the PCs 1)0(y,e2yy x'  . Being integrable by quadratics, PC has 

the exact solution for the equation: 2( ) 2 2xy x e x x    .  

For the application of Euler's method and codification of it on the interval J=[0;0,5], for 

example, it is noted : 2( )f x y x y   , 1yf   . 

The calculation code for the concrete example is made in C++ language, having two 
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subroutines. The two subordinates are: f(a,b), which calculates the expression: a2+b, and y(x), which 
calculates the values of the expression ex-x2-2x-2. 

The precision is noted: e=10-4, and the initial conditions of the variables are: X[0]=0,Y[0]=1. 
The framing interval is [0;0,5] with b=0,05 and n = 48. The maximum value of the derivative in 
relation to y is calculated: L=1. For h=10-3, according to the theory, =(e*L)/e(b-X[0])*L-1)-0,0001, so: | 
|< e=0,0001.   
The source code based on the previous theoretical considerations: 
include<iostream.h> 
#include<math.h> 
#include<iomanip.h> 
#include<graphics.h> 
#include<dos.h> 
#include<conio.h> 
long double h,X[100],Y[100];int n=48, i; 
long double f(float a,float b) {return a*a+b;} 
long double y(float x) {return(exp(x)-pow(x,2)-2*x-2);} 
void main() 
{clrscr(); 
 float aux=1,b=0.05; float L=1;X[0]=0;Y[0]=1; 
 long double e=pow(10,-4),z,h,delta=(e*L)/(exp((b-X[0])*L)-1)-0.001; 
 float x=0;z=aux+delta; float pas=pow(10,-3); 
 do{aux=z;x+=pas;z=f(x,y(x));} 
 while(abs(z-aux)>=delta); 
 h=pas; 
 cout<<"n="<<n<<' '<<"h"<<' '<<h<<endl; 
 for(i=1;i<=n;i++)X[i]=X[i-1]+h; 
 for(i=1;i<=n;i++)Y[i]=Y[i-1]+h*f(X[i-1],Y[i-1]); 
 cout<<"    X[i]    Y[i]    y(X[i])      Y[i+1]"<<endl; 
 int j=1;for(int i=1;i<=n;i++){j++;if(j%24==0) delay(5000); 
 cout<<setw(5)<<X[i]<<setw(10)<<Y[i]<<setw(10)<<(-y(X[i]))<<setw(10)<<Y[i+1]<<endl; }} 

 
In the penultimate iteration, the results will coincide to the first four decimal places after the 

comma, so up to the 5th, exclusively, as in figure 1. The difference    in value between Y[i] and 
y(X[i]), so between columns 2 and 3, is: 1.049182-1.049133=0.000049, approximately 0.00005 which 
verifies the relationship established by calculation for agreed numerical data 0.0001: 0.00005<0.0001. 

Assigning numerical values for   and   it could determine h  (or any other 
combination), so that the approximate solution has a prescribed precision. 

A better precision can be obtained if we use at each step more values of the function in the so-
called prediction-correction method. The method consists of a prediction stage when we use Euler's 
method: 

 1 1 ( )i i i i i ix x h Z Y hf x Y         

to obtain a first approximation for the value of the solution y  in the ix h  point, which is then 

corrected in the following sense:  

 1

( ) ( )

2
i i i i

i i

f x Y f x Z
Y Y h

  
    

 
The source code will be completed with the following sequence: 
for(i=1;i<=n-1;i++){ 
 X[i+1]=X[i]+h;Z[i+1]=Y[i]+h*f(X[i],Y[i]); 
 Y[i+1]=Y[i]+h*(f(X[i],Y[i])+f(X[i],Z[i]))/2;} 
 cout<<"    X[i]    Y[i]    f(X[i],Y[i])      f(X[i],Z[i])      Y[i+1]      Z[i+1]"<<endl; 
 j=1;for(i=1;i<=n;i++){j++;if(j%24==0) delay(5000); 
 cout<<setw(5)<<X[i]<<setw(10)<<Y[i]<<setw(10)<<f(X[i],Y[i])<< 
 setw(10)<<f(X[i],Z[i])<<setw(10)<<Y[i+1]<<setw(10)<<Y[i+1]<<endl; } 
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4. RESULTS AND DISCUSSION 

 
The vector Y[i] is displayed, with 48 components, approximate values in the 2nd column, and 

also 48 values, but "exact", calculated in the vector y(X[i]).(see Table 1) 
 

Table 1. The listed values of the approximate and exact solutions, using the polygonal line method 
                             (written in two columns ) 

    
                                                                                      

 

 
Fig. 1 Graphical representation of the exact and approximate PCs solutions 

 
After applying the prediction-correction method, the accuracy increases visibly. In the 3rd and 

4th columns are listed the 48 values of the vector f(X[i], Y[i]) and respectively of the vector f(X[i], 
Z[i]), the identical values starting with the 3rd component. Also, due to this addition, the components 
of the vector Y[i+1] and respectively their approximations, components of the vector Z[i+1], are 
identical after the first iteration. So, applying this method to the previous example, we obtain 
acceptable results, meaning that, in this case, the values in columns 3 and 4 coincide up to the 6th 
decimal, as do those in the columns 5 and 6 (Table 2). 
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Table 2. The listed values of the approximate and exact solutions, using the prediction-correction 

method (written in two columns ) 

 

 
 

5. CONCLUSIONS 
 

Departing from the existing theory, we have applied MAS and EULER’s methods in order to 
numerical solving a system of differential equations, the last method being perfected through the 
prediction-correction process. We have completed the presentation with the C++ code that allowed 
listing the sets of exact and approximate values of the solutions, as well as graphic visualization. The 
theory codification is the particular novelty of the paper. The article refers only to a narrow section of 
the methods for numerical solutions of the differential systems, namely, the successive approximations 
and the polygonal line method which are the most used for the first-order equations. 
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