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Abstract

We give an implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay
bipartite graph and, consequently, the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph
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1. INTRODUCTION

In the first part of the paper we introduce the definitions and the concepts that we operate with
and we fix the notation exactly as we did it in [3] and [4].
Let G =(V,E) be a simple (i.e. finite, undirected, loopless and without multiple edges) graph

with vertex set V = [n] and the edge set E = E(G). A vertex cover of G isa subset C V' such that
C i, j}#0, for any edge {i,j}e E(G). A vertex cover C of G is called minimal if no proper
subset C'c C is a vertex cover of G . A graph G is called unmixed if all minimal vertex covers of
G have the same cardinality. Let R = K[XI,XZ,...,Xn] be the polynomial ring in N variables over a

field K. The edge ideal of G is the monomial ideal 1(G) of R generated by all the quadratic
monomials X;X; with {i, j}e E(G). It is said that a graph G is Cohen-Macaulay (over K) if the
quotient ring R/ 1(G) is Cohen-Macaulay. Every Cohen-Macaulay graph is unmixed.

Let P, = {pl, Pyseees pn} be a poset with partial order <. Let G = G(P,) be the bipartite graph
on the set V. =W UW ', where W = {X,X,,...,X,} and W' ={y,,¥,,...,¥, }, whose edge set E(G)
consists of all 2-element subsets {Xi, y j} with P, < p;. It is said that a bipartite graph on

V. =W UW  comes from a poset , if there is a finite poset P, on {pl, [ T pn} such that p; < p;

n
implies 1 < J and after relabeling of the vertices of G one has G =G(P,).

Herzog and Hibi proved in [1, Theorem 3.4] that a bipartite graph G is Cohen-Macaulay if and
only if G comes from a poset.
We denote by M (G) the set of all minimal vertex covers of G .

Let L, be the Boolean lattice on the set {pl, Pyseees Py, } We consider the subset:
Ls = {a c {pl, P,,eees pn}| (EI)C € M(G): P ea <X EC}C L,.
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A subset a C P, is called a poset ideal of P, if for every a€a and be P,,b<a implies

n n

b e . We denote by I(Pn) the set of all poset ideals of P,. If a,f |(Pn), then ¢ N B € P, and

a U feP,, hence, | (Pn) is a lattice ordered by inclusion. Moreover, |(P,) is a distributive lattice.

Herzog, Hibi and Ohsugi proved in [2] that there is a one-to-one correspondence between the set
M (G) of all minimal vertex covers of G and the distributive lattice |(P,) of all poset ideals of P,.

Our aim in this paper is to give an implemented algorithm for computing the distributive lattice
associated to a Cohen-Macaulay bipartite graph and, consequently, the set of all minimal vertex covers
of a Cohen-Macaulay bipartite graph.

2. THE DISTRIBUTIVE LATTICE ASSOCIATED TO A COHEN-MACAULEY BIPARTITE
GRAPH AND THE MINIMAL VERTEX COVERS OF A COHEN-MACAULAY BIPARTITE
GRAPH

In this section we focus mainly from the computational point of view on the set of all minimal
vertex covers of a Cohen-Macaulay bipartite graph, a particular case of an unmixed bipartite graph,
and, consequently, on the distributive lattice associated to a Cohen-Macaulay bipartite graph.

Firstly, let us present our result, inspired by [5, Lemma 2.5], which provides a recursive method
for computing the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph.

Proposition 2.1.([4]) Let P, = {pl, [T pn}, N>2, be a poset such that p, < p;implies
i< jandlet G, = G(Pn) be the graph on V,, that comes from the poset P,.Let G, , be the subgraph
of G, induced by the subset V, , =V, \{Xn, Y, } Then a subset C, <V, is a minimal vertex cover of
Gn

C,=C, ,u {Xn}, where C,_, <V, , is a minimal vertex cover of G, , such that X, e C__,, for each

if and only if either C, =C,_, U {yn}, where C, , <V, , is a minimal vertex cover of G, or

ie[n—1] with p, < p;.

As an application of the Proposition 2.1. we can recover a result on the lattice associated to a
Cohen-Macaulay bipartite graph ([2, Lemma 2.1.]).

Corollary 2.2.([2,4]) Let G, =G(P,), where P, = {pl, Pyseees pn} is a poset such that p, < p;
implies 1 < j. Then Lg = I(Pn).

Next we present our algorithm that was given in [4] for computing the distributive lattice | (Pn)
and, consequently, the set M (G) of all minimal vertex covers of G, where G is a bipartite graph
that comes from a poset P, = {pl, Dyseees pn} such that p; < p; implies i < J.

Algorithm 2.3.([4]) The algorithm, based on recursion, computes the lattice |(B), for all
ke [n], where B, is the subposet of P, induced by the subset {pl, [T pk}. It starts with
1(P)=1{2.{p,}}. At each step k, 2 <k <n, let us assume that the lattice |(P,_,) has already been
computed. We consider the set L(pk)z {pj |p; <P1<j<k-— 1}. By the Proposition 2.1. and the
Corollary 2.2. 1(R)=1(P,_,)Ul,, where I, = {a u{p,}| e 1(P_,), L(p,)c a}.

In the final part of the algorithm we cojmpute all minimal vertex covers C, of G by the

corresponding poset ideal & of P,.

Input: a poset P, ={p,, p,,..., p,} such that p, < p; implies i < ]
Output: the lattice | of all poset ideals of P, and the set M of all minimal vertex covers of
G(R,)
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| ={0,{p,}} tmitally, 1(R)={0,{p, }}}
for K=2,n do

L=0 {We compute the set L(pk):{pj|pj <Pl k—l}}
for j=1,k—-1do
if p; < Py then
L=LU{p;}
end if
end for
I'=0 {Wecompute theset I, ={a U {p,}|aecl(P_) L(p,)ca}}
for all €l do
if L < o then

I'=1'Ufeuipj}
end if
end for
I=1Ul"  {We compute the lattice I(Pk): |(Pk_1)U )
end for

M =0 {Wecompute the set M by the lattice | ; initially, M =@ }
forall 2 €l do
C=0 {Wecompute C, = {Xj |p; € a}u {yj | P ea}}
for j=1,n do
if p; € a then
C=CuUlx|
else
C=Culy,|
end if

end for
M=MU {C} {Each time we get a minimal vertex cover C_ , we additto M }

end for
We give an implementation of the previous algorithm in Turbo Pascal Version 7.0.

program Lattice associated to a Cohen Macaulay bipartite graph;
uses Crt;
type

vector=array[1..100] of integer;

relation=array[1..100,1..100] of integer;

m_int=set of 0..10;

var
i,j,k,l,m,n:integer;
level:vector;
R:relation;
ML:m_int;
IP:array[1..10,1..1024] of m_int;
begin
ClrScr;
writeln(‘Introduce the cardinality of the poset’);
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write(‘n=");readln(n);
writeln(n);
fori:=1 ton do
for j:=1 to n do
begin
if i=j thenR[L,j]:=1
else R[1,j]:=0;
end;
writeln(‘introduce the number of the relations of type p[i]<p[j] implies i<j’);
write(‘m=");readln(m);
writeln(‘introduce the relations of type p[i]<p[j] implies i<j’);
for k:=1 to m do
begin
write(‘i=");readln(i);
write(‘j=");readln(j);writeln;
R[i,j]:=1;
end;
writeln(‘ Write all the relations of the poset);
for i:=1 to n do writeln(‘p[‘,i,”]=p[‘,1,’]);
for i:=1 to n-1 do
begin
for j:=i+1 ton do
if R[1,j]=1 then writeln(‘p[*,i,"J=p[*.j,’T);
end;
k:=1;
1:=1;
IP[k,1]=(];
l:=1+1;
IP[k,1]:=[1];
level[k]:=l;
if n>1 then
begin
repeat
k:=k+1;
level[k]:=level[k-1];
for 1:=1 to level[k] do IP[k,1]:=IP[k-1,1];
ML:=[];
for j:=1 to k-1do
if R[j,k]=1 then ML:=ML+[j];
for 1:=1 to level[k-1] do
if ML<=IP[k-1,1] then
begin
IP[k,level[k]+1]:=IP[k-1,1]+[k];
level[k]:=level[k]+1;
end;
until k=n;
end;
for t:=1 to level[n] do
begin
write(‘Poset ideal ,t,”:);
if IP[n,t]=[] then writeln(‘empty set)
else
begin
fori:=1 tondp
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if I in IP[n,t] then write(‘p[‘,1,"] *);writeln;

end;
end;
readln;
writeln;
for t:=1 to level[n] do
begin

write(‘Minimal vertex cover number ,t,”:’);
if IP[n,t]=[] then
for i:=1 to n do write(‘y[*,i,"] )
else
begin
for i:=1 to n do
if 1 in IP[n,t] then write(‘x[‘,i,’] ©)
else write(‘y[‘,1,’] °);
end;
writeln;
end;
readln;
end.

Example 2.4. Let P, = {pl, P,, P;» p4} be the poset with p, < p,, p, < p, and P, < p,. The

Hasse diagram of P, is represented in the next figure:

P3

P2 P4

P1

Fig. 1
Let G =G(P,) be the bipartite graph that comes from the poset P,. The graph is represented
geometrically in the next figure:
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X4 V4

X3 y3

X2 y2

X1 y:
Fig. 2

By using the program based on the Algorithm 2.3. we get the distributive lattice associated to
the graph G :

1(P)=10.{p 1 {pi. o} {Pis o P} (R PSP Pos PP P Py L)
The Hasse diagram of the poset (1(P,),c=) is depicted in the next figure:

{pP1.p2.p3.p4}

{p15p29p4}

{pP1,p2.p3}

{p1.p4}

{p1.p2}

ip1}

0]

Fig. 3

Finally, we get the set M (G) of all minimal vertex covers of the graph G :
M (G) = {{yl‘yZ’ Ys» y4}= {Xl’ Y2 Y3 y4}9 {X1= X5, Y3, y4}, {Xp X5, X5, y4}, {Xp Yo, Y3, %, }9 {prza Y3, %, },
{XI,XZ,X3,X4}} :
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