ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI MATHEMATICS, PHYSICS, THEORETICAL MECHANICS FASCICLE II, YEAR XV (XLVI) 2023, No. 1

DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2023

An implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph

Cristian Ion

"Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domneasca street, 800201 Galati, Romania Corresponding author: cristian.adrian.ion@gmail.com

Abstract

We give an implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph and, consequently, the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph **Keywords:** Cohen-Macaulay bipartite graph, vertex cover, distributive lattice, algorithm.

1. INTRODUCTION

In the first part of the paper we introduce the definitions and the concepts that we operate with and we fix the notation exactly as we did it in [3] and [4].

Let G = (V, E) be a simple (i.e. finite, undirected, loopless and without multiple edges) graph with vertex set V = [n] and the edge set E = E(G). A vertex cover of G is a subset $C \subset V$ such that $C \cap \{i,j\} \neq \emptyset$, for any edge $\{i,j\} \in E(G)$. A vertex cover C of G is called *minimal* if no proper subset $C' \subset C$ is a vertex cover of G. A graph G is called *unmixed* if all minimal vertex covers of G have the same cardinality. Let $R = K[x_1, x_2, ..., x_n]$ be the polynomial ring in G variables over a field G. The edge ideal of G is the monomial ideal G0 of G1 generated by all the quadratic monomials G1 with G2 with G3 is Cohen-Macaulay (over G3 if the quotient ring G3 is Cohen-Macaulay. Every Cohen-Macaulay graph is unmixed.

Let $P_n = \{p_1, p_2, ..., p_n\}$ be a poset with partial order \leq . Let $G = G(P_n)$ be the bipartite graph on the set $V_n = W \cup W'$, where $W = \{x_1, x_2, ..., x_n\}$ and $W' = \{y_1, y_2, ..., y_n\}$, whose edge set E(G) consists of all 2-element subsets $\{x_i, y_j\}$ with $p_i \leq p_j$. It is said that a bipartite graph on $V_n = W \cup W'$ comes from a poset, if there is a finite poset P_n on $\{p_1, p_2, ..., p_n\}$ such that $p_i \leq p_j$ implies $i \leq j$ and after relabeling of the vertices of G one has $G = G(P_n)$.

Herzog and Hibi proved in [1, Theorem 3.4] that a bipartite graph G is Cohen-Macaulay if and only if G comes from a poset.

We denote by M(G) the set of all minimal vertex covers of G.

Let L_n be the Boolean lattice on the set $\{p_1, p_2, ..., p_n\}$. We consider the subset:

$$L_G = \{\alpha \subset \{p_1, p_2, ..., p_n\} \mid (\exists) C \in M(G): p_i \in \alpha \Leftrightarrow x_i \in C\} \subset L_n.$$

A subset $\alpha \subset P_n$ is called a *poset ideal* of P_n if for every $a \in \alpha$ and $b \in P_n$, $b \leq a$ implies $b \in \alpha$. We denote by $I(P_n)$ the set of all poset ideals of P_n . If $\alpha, \beta \in I(P_n)$, then $\alpha \cap \beta \in P_n$ and $\alpha \cup \beta \in P_n$, hence, $I(P_n)$ is a lattice ordered by inclusion. Moreover, $I(P_n)$ is a distributive lattice.

Herzog, Hibi and Ohsugi proved in [2] that there is a one-to-one correspondence between the set M(G) of all minimal vertex covers of G and the distributive lattice $I(P_n)$ of all poset ideals of P_n .

Our aim in this paper is to give an implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph and, consequently, the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph.

2. THE DISTRIBUTIVE LATTICE ASSOCIATED TO A COHEN-MACAULEY BIPARTITE GRAPH AND THE MINIMAL VERTEX COVERS OF A COHEN-MACAULAY BIPARTITE GRAPH

In this section we focus mainly from the computational point of view on the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph, a particular case of an unmixed bipartite graph, and, consequently, on the distributive lattice associated to a Cohen-Macaulay bipartite graph.

Firstly, let us present our result, inspired by [5, Lemma 2.5], which provides a recursive method for computing the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph.

Proposition 2.1.([4]) Let $P_n = \{p_1, p_2, ..., p_n\}$, $n \ge 2$, be a poset such that $p_i \le p_j$ implies $i \le j$ and let $G_n = G(P_n)$ be the graph on V_n that comes from the poset P_n . Let G_{n-1} be the subgraph of G_n induced by the subset $V_{n-1} = V_n \setminus \{x_n, y_n\}$. Then a subset $C_n \subset V_n$ is a minimal vertex cover of G_n if and only if either $C_n = C_{n-1} \cup \{y_n\}$, where $C_{n-1} \subset V_{n-1}$ is a minimal vertex cover of G_{n-1} or $C_n = C_{n-1} \cup \{x_n\}$, where $C_{n-1} \subset V_{n-1}$ is a minimal vertex cover of G_{n-1} such that $x_i \in C_{n-1}$, for each $i \in [n-1]$ with $p_i < p_j$.

As an application of the Proposition 2.1. we can recover a result on the lattice associated to a Cohen-Macaulay bipartite graph ([2, Lemma 2.1.]).

Corollary 2.2.([2,4]) Let $G_n = G(P_n)$, where $P_n = \{p_1, p_2, ..., p_n\}$ is a poset such that $p_1 \le p_j$ implies $i \le j$. Then $L_{G_n} = I(P_n)$.

Next we present our algorithm that was given in [4] for computing the distributive lattice $I(P_n)$ and, consequently, the set M(G) of all minimal vertex covers of G, where G is a bipartite graph that comes from a poset $P_n = \{p_1, p_2, ..., p_n\}$ such that $p_i \leq p_j$ implies $i \leq j$.

Algorithm 2.3.([4]) The algorithm, based on recursion, computes the lattice $I(P_k)$, for all $k \in [n]$, where P_k is the subposet of P_n induced by the subset $\{p_1, p_2, ..., p_k\}$. It starts with $I(P_1) = \{\emptyset, \{p_1\}\}$. At each step k, $2 \le k \le n$, let us assume that the lattice $I(P_{k-1})$ has already been computed. We consider the set $L(p_k) = \{p_j \mid p_j < p_k, 1 \le j \le k-1\}$. By the Proposition 2.1. and the Corollary 2.2. $I(P_k) = I(P_{k-1}) \cup I_k'$, where $I_k' = \{\alpha \cup \{p_k\} \mid \alpha \in I(P_{k-1}), L(p_k) \subset \alpha\}$.

In the final part of the algorithm we coimpute all minimal vertex covers C_{α} of G by the corresponding poset ideal α of P_{α} .

Input: a poset $P_n = \{p_1, p_2, ..., p_n\}$ such that $p_i \le p_j$ implies $i \le j$

Output: the lattice I of all poset ideals of P_n and the set M of all minimal vertex covers of $G(P_n)$

```
I = \{\emptyset, \{p_1\}\}\ {Initially, I(P_1) = \{\emptyset, \{p_1\}\}\}}
for k = 2, n do
L = \emptyset {We compute the set L(p_k) = \{p_j | p_j < p_k, 1 \le j \le k - 1\}}
for j = 1, k - 1 do
 if p_i < p_k then
  L = L \cup \{p_i\}
 end if
end for
             {We compute the set I_{k} = \{\alpha \cup \{p_{k}\} | \alpha \in I(P_{k-1}), L(p_{k}) \subset \alpha\}}
I' = \emptyset
for all \alpha \in I do
if L \subset \alpha then
 I' = I' \cup \{\alpha \cup \{p_k\}\}\
end if
end for
I = I \cup I' {We compute the lattice I(P_k) = I(P_{k-1}) \cup I'_k}
end for
M = \emptyset
              {We compute the set M by the lattice I; initially, M = \emptyset}
for all \alpha \in I do
          \{\text{We compute } C_{\alpha} = \{x_i | p_i \in \alpha\} \cup \{y_i | p_i \in \alpha\}\}\
 for j = 1, n do
 if p_i \in \alpha then
  C = C \cup \{x_i\}
  else
  C = C \cup \{y_i\}
  end if
 end for
 M = M \cup \{C\}
                      {Each time we get a minimal vertex cover C_{\alpha}, we add it to M }
end for
We give an implementation of the previous algorithm in Turbo Pascal Version 7.0.
program Lattice associated to a Cohen Macaulay bipartite graph;
uses Crt;
type
      vector=array[1..100] of integer;
      relation=array[1..100,1..100] of integer;
      m int=set of 0..10;
var
     i,j,k,l,m,n:integer;
     level:vector;
     R:relation;
     ML:m int;
     IP:array[1..10,1..1024] of m int;
begin
ClrScr;
writeln('Introduce the cardinality of the poset');
```

```
write('n=');readln(n);
writeln(n);
for i:=1 to n do
  for j:=1 to n do
  begin
   if i=j thenR[I,j]:=1
         else R[I,j]:=0;
  end;
writeln('introduce the number of the relations of type p[i] < p[j] implies i < j');
write('m=');readln(m);
writeln('introduce the relations of type p[i] < p[j] implies i < j');
for k:=1 to m do
  begin
  write('i=');readln(i);
  write('j=');readln(j);writeln;
  R[i,j]:=1;
  end;
writeln('Write all the relations of the poset);
for i:=1 to n do writeln('p[',i,']=p[',i,']');
for i:=1 to n-1 do
  begin
  for j:=i+1 to n do
   if R[i,j]=1 then writeln('p[',i,']=p[',j,']');
  end;
k:=1:
1:=1;
IP[k,l]=[];
1:=1+1;
IP[k,1]:=[1];
level[k]:=l;
if n>1 then
begin
repeat
k := k+1;
level[k]:=level[k-1];
for l:=1 to level[k] do IP[k,l]:=IP[k-1,l];
ML:=[];
  for j:=1 to k-1 do
   if R[j,k]=1 then ML:=ML+[j];
for l:=1 to level[k-1] do
  if ML \le IP[k-1,l] then
   begin
    IP[k,level[k]+1]:=IP[k-1,l]+[k];
    level[k]:=level[k]+1;
   end:
until k=n;
end;
for t:=1 to level[n] do
  begin
   write('Poset ideal ',t,':');
   if IP[n,t]=[] then writeln('empty set')
                else
                  begin
                    for i:=1 to n dp
```

```
if I in IP[n,t] then write('p[',i,'] ');writeln;
                   end;
  end;
readln;
writeln;
for t:=1 to level[n] do
  begin
   write('Minimal vertex cover number ',t,':');
   if IP[n,t]=[] then
                 for i:=1 to n do write('y[',i,']')
                else
                  begin
                    for i:=1 to n do
                     if i in IP[n,t] then write('x[',i,']')
                                    else write('y[',i,']');
                  end;
writeln;
end;
readln;
end.
```

Example 2.4. Let $P_4 = \{p_1, p_2, p_3, p_4\}$ be the poset with $p_1 \le p_2$, $p_1 \le p_4$ and $p_2 \le p_3$. The Hasse diagram of P_4 is represented in the next figure:

Fig. 1

Let $G = G(P_4)$ be the bipartite graph that comes from the poset P_4 . The graph is represented geometrically in the next figure:

By using the program based on the Algorithm 2.3. we get the distributive lattice associated to the graph G:

$$I(P_4) = \{\emptyset, \{p_1\}, \{p_1, p_2\}, \{p_1, p_2, p_3\}, \{p_1, p_4\}, \{p_1, p_2, p_4\}, \{p_1, p_2, p_3, p_4\}\}.$$

The Hasse diagram of the poset $(I(P_4), \subset)$ is depicted in the next figure:

Finally, we get the set M(G) of all minimal vertex covers of the graph G :

$$M(G) = \{\{y_1, y_2, y_3, y_4\}, \{x_1, y_2, y_3, y_4\}, \{x_1, x_2, y_3, y_4\}, \{x_1, x_2, x_3, y_4\}, \{x_1, y_2, y_3, x_4\}, \{x_1, x_2, y_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}.$$

References

- 1. Herzog J., Hibi T., Distributive lattices, Bipartite Graphs and Alexander Duality, J. Algebraic Combin. 22 (2005), 289–302.
- 2. Herzog J., Hibi T., Ohsugi H., Unmixed bipartite graphs and sublattices of the Boolean lattices, J. Algebraic Combin. 30 (2009), 415–420.
- 3. Ion C., On the Hilbert series of vertex cover algebras of Cohen-Macauley bipartite graphs, Le Matematiche, Volume LXV, Issue I (2010), 89-99.
- 4. Ion C., The study of vertex cover algebras of simplicial complexes and graphs, Ph. D. Thesis, Ovidius University of Constanta, 2010, pp. 19-23.
- 5. Van Tuyl A., Villareal R.H., Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Combin. Theory Ser. A 115 (2008), 799-814.