ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI MATHEMATICS, PHYSICS, THEORETICAL MECHANICS FASCICLE II, YEAR XV (XLVI) 2023, No. 2 DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2023.2.07

The ambient noise level in the city of Galati and surroundings

Romana Maria Drasovean^{1,*}, Simona Condurache-Bota^{1, 2}, Nicolae Tigau¹, Gabriel Murariu^{1, 2}

¹ "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 800008 Galati, Romania ² REXDAN research infrastructure, "Dunarea de Jos" University of Galati, 98 George Cosbuc Blvd., 800385, Galati, Romania

* Corresponding author: rdrasov@ugal.ro

Abstract

The intense and sustained noise to which we are subjected can cause disorders of the auditory system. It affects especially those who suffer from heart problems, but it also has dramatic consequences on the nervous system. It can cause stress, depression, sleep disturbances, cognitive problems and reduced ability to concentrate. The city of Galati is located in the southeastern part of Romania, in the southeastern part of the county with the same name. Galati ranked fifth in terms of noise pollution and unfortunately the local authorities do not run any noise reduction or control program. Through this paper we want to join those who sound the alarm to the authorities to take concrete measures in order to manage and control noise pollution. Data were collected in different areas of the city of Galati and its surroundings. Equivalent noise level was determined with a professional digital acoustic sound level meter with two frequency filters: "A" and "C". The device can record sound values between 30 dB-130 dB in the 31.3 Hz and 8 kHz range. In general, the sound level exceeded the maximum admissible limit or came close to this value.

Keywords: noise level, frequency filters, Galati.

1. INTRODUCTION

The main objective of this paper is to determine the ambient noise level in the city of Galati and surroundings. Galati is located in the southeastern part of Romania.

The excessive and uncontrolled presence of unwanted and disturbing sounds can have negative effects on human health and can disturb the natural balance of the environment etc. [1].

Those who live in the urban environment have gotten used with the noise of the street and the noise from the workplace so that it doesn't even bother them anymore. Even if people have adapted to this environment, does not mean that these excessive and long-term noises do not have an important impact on health. After a long exposure, people will be able to ask themselves why they have insomnia, are tired or end up with sensori-neural hearing loss. Apart from hearing loss, noise pollution can also have other negative effects such as headaches, memory disorders, gastritis, high blood pressure, heart disease, etc.[1, 2, 3]. Therefore, it is vital that every person is aware of this problem and acts to reduce this type of pollution and the authorities take concrete measures in order to manage and control noise pollution. According to World Health Organization (WHO), noise is the second major environmental cause of health problems, after the effect produced by atmospheric pollution [1].

2. EXPERIMENTAL

Equivalent noise level was determined from Monday to Friday with a professional digital acoustic sound level meter with two frequency filters: "A" and "C". An A-weighting filter takes into account the normal tolerance curve of the human ear and ensures a correct estimate of the risk level for human. C-weighting filters were intended for low and high frequency sounds, measure noise peaks which are usually those emitted by car engines, firearms, hammers, compressed air tools, etc. C-filters are used in noisy areas[4]. The sound level meter can record sound values between 30dB-130dB in the 31.3 Hz and 8 KHz range.

Data were collected in different areas of the city of Galati and its surroundings. To fulfil the proposed objective, 18 locations (measurement points) were chosen from the urban area of the city of Galati (Fig.1). In the measurement points there are either streets with intense traffic where various companies, shops, banks have their headquarters and there are apartment buildings, or there are adjacent streets where there are only buildings with apartments. Exceptions are locations 2, 3, 6 and 16, these registration points being located in green areas.

Fig. 1. The measurement points in the city of Galati

Independent samples t-test was run for all data sets. The analysis was done on frequency domains.

Pearson correlation coefficients were calculated to analyse the similarity between the noise series measured in the frequency domain A and C respectively.

The independent t-test and Pearson matrix were run in Excel.

3. RESULTS AND DISCUSSION

In all the monitored areas located on the main arteries, the average values recorded with Aweighting filter are significantly lower than those recorded with C-weighting filter (Fig.2 and Fig.3). These differences appear due to the existence of noise sources from car traffic that includes lowtonnage and high-speed cars. The lowest average values(41-42 dB) were obtained in the Parks and on the Lower Cliff, followed by the measurement points where there are no main arteries but only adjacent streets(46-49 dB). The average values corresponding to the A frequency domain are slightly higher than the average values corresponding to the C frequency domain in the following locations: 1, 2, 3, 4, 5, 10, 16. At the same time, the median values are generally lower than the mean values because the maximum values are much higher than those below the mean. The largest dispersions of data sets were obtained in high-traffic locations. The lowest population dispersion for both frequency domains corresponding to the A-and C-weighting filters were obtained in areas without traffic (1, 2, 16). As we move away from the road, the sound intensity level drops significantly and the dispersion of the population is smaller. The values obtained for the sound level at the edge of the pavement bordering the carriageway are generally lower or equal to the maximum admissible value of 70dB [5]. The values of the noise level outside the building, measured 2 m from the facade, exceeded the admissible value of 50dB [6].

Fig. 3. Sound intensity level values in the C frequency rang

Figures 4, 5 and 6 show Boxplots for the Cliff area (locations 1 and 3), for LMK High School (measurement points 12 and 13) and for Last Lion area (locations 14, 15 and 16).

Fig. 4. Comparisons between the values of the sound intensity level in the area of LMK High School

In the LMK High School area (Fig. 4), the average values do not match with the medians. Near the roadway (measurement point 12-Brailei street), the average value of the measurement set is 10 dB higher than the average value corresponding to the data set obtained in front of the high school (on an adjacent street with less intense traffic-measurement point 13). Dispersions are not uniform. The same results were obtained for the domain corresponding to C-weighting filter.

Fig. 5. Comparisons between the values of the sound intensity level in the Cliff area

In the area of the cliff (Fig. 5) there is a difference of 20 dB between the average value of the sound intensity level of the Upper Cliff (measurement point 2) and the Lower Cliff (measurement point 3). This difference is due to traffic. There is no road traffic on the Lower Cliff. The dispersion of the population corresponding to the Lower Cliff is much smaller than that corresponding to the Upper Cliff. The mean values coincide with the medians. The dispersion around the median is symmetrical. The same results were obtained for the domain corresponding to C-weighting filter.

Fig. 6. Comparisons between the values of the sound intensity level in the Last Lion area

If we compare the values of the sound intensity level in the area of the Last Lion intersection (Fig. 6), significant differences in the average value are observed as we move away from the traffic area. The lowest data dispersion was obtained in the Park(16), the lowest mean value and the lowest median value were obtained behind the buildings(15). For points 14 and 16 the dispersions are symmetrical around the median value, while for point 15 the dispersion is smaller between quartile 1 and the median value.

In conclusion, we can say that the main source of noise pollution in the urban area is car traffic. In general, the sound level exceeded the maximum admissible limit or came close to this value. For frequency domains corresponding to the A-and C-weighting filters the t-test for independent samples was run (Tables 1 and 2).

If the values of the parameter t are high, then there are significant differences between the two data sets. In the t test, the probability of making an error if we reject the null hypothesis is denoted by p. p-value is also called significance value. When p-value is lower than the chosen significance threshold (α =0.05) then we accept as true the hypothesis H1 and reject the hypothesis H0 [7].

Group 1 vs. Group 2	t value	р	p 2-sided	p variances	
Point 3 vs. Point 2	6.3798	0	0	0	
Point 3 vs. Point 1	-14.2347	0	0	0.118783	
Point 3 vs. Point 6	8.5224	0	0	0.003883	
Point 3 vs. Point 12	-10.4896	0	0	0.000006	
Point 3 vs. Point7	-20.0123	0	0	0.001078	
Point 3 vs. Point 17	-12.9686	0	0	0.000014	
Point 3 vs. Point 18	3.9138	0.000168	0.000168	0.734299	
Point 3 vs. Point 4	-8.1626	0	0	0.142689	
Point 3 vs. Point 5	5.622	0	0	0.251052	
Point 3 vs. Point 9	-15.3545	0	0	0.046244	

Table 1. Independent samples t-test parameters corresponding to channel A
(selection from the 324 variants)

Point 3 vs. Point 10	-19.8104	0	0	0.005979	
Point 3 vs. Point 10	-18.6229	0	0	0.078798	
Point 3 vs. Point 16	2.8818	0.004859	0.005403	0	
Point 3 vs. Point 14	-18.6757	0	0	0.056355	
Point 3 vs. Point 15	11.8853	0	0	0.76727	
Point 2 vs. Point 3	-6.3798	0	0	0	
Point 2 vs. Point 2	0	1	1	1	
Point 2 vs. Point 1	-22.715	0	0	0	
Point 2 vs. Point 6	5.5912	0	0.000001	0	
Point 2 vs. Point 13	-5.9128	0	0	0	
Point 2 vs. Point 12	-14.9903	0	0	0	
Point 2 vs. Point 7	-42.3293	0	0	0.000201	
Point 2 vs. Point 17	-17.8975	0	0	0	
Point 2 vs. Point 4	-15.3546	0	0	0	
Point 2 vs. Point 9	-31.2432	0	0	0.000001	
Point 2 vs. Point 8	-6.8855	0	0	0.003304	
Point 2 vs. Point 10	-27.6069	0	0	0	
Point 2 vs. Point 11	-27.7736	0	0	0	
Point 2 vs. Point 16	-7.0614	0	0	0.682326	
Point 2 vs. Point 14	-27.5856	0	0	0	
Point 2 vs. Point 15	9.4625	0	0	0	
Point 1 vs. Point 3	14.2347	0	0	0.118783	
Point 1 vs. Point 2	22.715	0	0	0	
Point 1 vs. Point 1	0	1	1	1	
Point 1 vs. Point 6	19.4454	0	0	0.174409	
Point 1 vs. Point 13	9.196	0	0	0.037305	
Point 1 vs. Point 12	-0.1082	0.914058	0.914097	0.002184	
Point 1 vs. Point 7	-0.5261	0.600015	0.600451	0.000002	
Point 1 vs. Point 17	-2.2234	0.028485	0.028849	0.004067	
Point 1 vs. Point 18	17.9348	0	0	0.058193	
Point 1 vs. Point 4	5.5936	0	0	0.92419	
Point 1 vs. Point 5	19.9589	0	0	0.007283	
Point 1 vs. Point 9	2.4813	0.014794	0.015184	0.000466	
Point 1 vs. Point 8	18.3211	0	0	0	
Point 1 vs. Point 10	-6.5538	0	0	0.224324	
Point 1 vs. Point 11	-4.2114	0.000056	0.000056	0.841019	
Point 1 vs. Point 16	19.7851	0	0	0	
Point 1 vs. Point 14	-4.4444	0.000023	0.000023	0.723561	
Point 1 vs. Point 15	24.9059	0	0	0.064095	
Point 6 vs. Point 3	-8.5224	0	0	0.003883	
Point 6 vs. Point 2	-5.5912	0	0.000001	0	
	-19.4454	0	0	0.174409	

Point 6 vs. Point 6	0	1	1	1
Point 6 vs. Point 13	-8.3356	0	0	0.462495
Point 6 vs. Point 13	-15.5568	0	0	0.402493
Point 6 vs. Point 7	-23.7643	0	0	0.081550
Point 6 vs. Point 7	-23.7043	0	0	0.122394
Point 6 vs. Point 17	-17.8093	0	0	0.001321
Point 6 vs. Point 18	-14.5343	0	0	0.146398
		0.000009		
Point 6 vs. Point 5	-4.6795		0.000012	0.000071
Point 6 vs. Point 9	-20.4534	0	0	0.000002
Point 6 vs. Point 8	-8.1974	0	0	0
Point 6 vs. Point 10	-23.9731	0	0	0.885285
Point 6 vs. Point 11	-23.0103	0	0	0.246379
Point 6 vs. Point 16	-7.9269	0	0	0
Point 6 vs. Point 14	-23.051	0	0	0.313968
Point 6 vs. Point 15	0.5204	0.603983	0.604202	0.001524
Point 12 vs. Point 3	10.4896	0	0	0.000006
Point 12 vs. Point 2	14.9903	0	0	0
Point 12 vs. Point 1	0.1082	0.914058	0.914097	0.002184
Point 12 vs. Point 6	15.5568	0	0	0.081536
Point 12 vs. Point 13	7.5777	0	0	0.310732
Point 12 vs. Point 12	0	1	1	1
Point 12 vs. Point 7	-0.2355	0.814338	0.814666	0
Point 12 vs. Point 17	-1.7628	0.081046	0.081049	0.841665
Point 12 vs. Point 18	13.0741	0	0	0.000001
Point 12 vs. Point 4	4.3584	0.000032	0.000037	0.001607
Point 12 vs. Point 5	14.2631	0	0	0
Point 12 vs. Point 9	1.8471	0.067745	0.06942	0
Point 12 vs. Point 8	12.4454	0	0	0
Point 12 vs. Point 10	-5.0832	0.000002	0.000002	0.059602
Point 12 vs. Point 11	-3.121	0.002368	0.002464	0.004078
Point 12 vs. Point 16	13.1077	0	0	0
Point 12 vs. Point 14	-3.3164	0.00128	0.001338	0.006433
Point 12 vs. Point 15	18.1306	0	0	0.000002
Point 18 vs. Point 2	1.3494	0.18031	0.182058	0
Point 18 vs. Point 1	-17.9348	0	0	0.058193
Point 18 vs. Point 6	5.635	0	0	0.001321
Point 18 vs. Point 13	-4.5603	0.000015	0.000019	0.000096
Point 18 vs. Point 12	-13.0741	0	0	0.000001
Point 18 vs. Point 7	-25.4755	0	0	0.003218
Point 18 vs. Point 17	-15.6412	0	0	0.000003
Point 18 vs. Point 18	0	1	1	1
Point 18 vs. Point 4	-11.7822	0	0	0.071747
Point 18 vs. Point 5	1.5414	0.126433	0.126477	0.417942

Point 18 vs. Point 9	-20.2917	0	0	0.097032
Point 18 vs. Point 8	-2.866	0.005088	0.005334	0.000195
Point 18 vs. Point 10	-23.1561	0	0	0.002111
Point 18 vs. Point 11	-22.3294	0	0	0.036544

Table 2. Independent samples t-test parameters corresponding to channel C (selection from the 324 variants)

Group 1 vs. Group 2	t- value	р	p 2-sided	p Variances	
Point 3 vs. Point 3	0	1	1	1	
Point 3 vs. Point 2	7.8545	0	0	0.109036	
Point 3 vs. Point 1	-27.5095	0	0	0.363487	
Point 3 vs. Point 6	7.0013	0	0	0.000001	
Point 3 vs. Point 13	-6.8841	0	0	0.003205	
Point 3 vs. Point 12	-19.951	0	0	0	
Point 3 vs. Point 7	-28.3174	0	0	0.033543	
Point 3 vs. Point 17	-20.5896	0	0	0.000003	
Point 3 vs. Point 18	-1.6629	0.099528	0.100193	0.000761	
Point 3 vs. Point 4	-6.7538	0	0	0	
Point 3 vs. Point 5	4.2212	0.000054	0.000079	0	
Point 3 vs. Point 9	-24.6444	0	0	0.937981	
Point 3 vs. Point 8	-6.3067	0	0	0.000136	
Point 3 vs. Point 10	-20.0872	0	0	0	
Point 3 vs. Point 11	-17.8065	0	0	0	
Point 3 vs. Point 16	2.2593	0.02608	0.02622	0.077187	
Point 3 vs. Point 14	-22.216	0	0	0.000014	
Point 3 vs. Point 15	11.3371	0	0	0.163829	
Point 2 vs. Point 3	-7.8545	0	0	0.109036	
Point 2 vs. Point 2	0	1	1	1	
Point 2 vs. Point 1	-37.2543	0	0	0.012665	
Point 2 vs. Point 6	2.7186	0.007754	0.00845	0	
Point 2 vs. Point 13	-13.096	0	0	0.000009	
Point 2 vs. Point 12	-24.5431	0	0	0	
Point 2 vs. Point 7	-36.725	0	0	0.000246	
Point 2 vs. Point 17	-26.0188	0	0	0	
Point 2 vs. Point 18	-7.2656	0	0	0.000001	
Point 2 vs. Point 4	-10.3786	0	0	0	
Point 2 vs. Point 5	0.6479	0.518594	0.519636	0	
Point 2 vs. Point 9	-35.2425	0	0	0.127085	
Point 2 vs. Point 8	-11.825	0	0	0	
Point 2 vs. Point 10	-24.9112	0	0	0	
Point 2 vs. Point 11	-21.6028	0	0	0	
Point 2 vs. Point 16	-6.4638	0	0	0.867291	

D: () D: ()	20.0202	0	0	0		
Point 2 vs. Point 14	-28.0202	0	0	0		
Point 2 vs. Point 15	5.4041	0	0.000001	0.003057		
Point 1 vs. Point 3	27.5095	0	0	0.363487		
Point 1 vs. Point 2	37.2543	0	0	0.012665		
Point 1 vs. Point 1	0	1	1	1		
Point 1 vs. Point 6	24.5315	0	0	0.000061		
Point 1 vs. Point 13	15.2054	0	0	0.038811		
Point 1 vs. Point 12	-3.6625	0.000405	0.000479	0.000001		
Point 1 vs. Point 7	-3.4356	0.000869	0.000878	0.219155		
Point 1 vs. Point 17	-1.9854	0.049899	0.050645	0.00011		
Point 1 vs. Point 18	19.312	0	0	0.01258		
Point 1 vs. Point 4	7.2701	0	0	0		
Point 1 vs. Point 5	18.7924	0	0	0		
Point 1 vs. Point 9	4.6717	0.00001	0.00001	0.324039		
Point 1 vs. Point 8	13.8591	0	0	0.00312		
Point 1 vs. Point 10	-3.1351	0.002268	0.002482	0.000004		
Point 6 vs. Point 3	-7.0013	0	0	0.000001		
Point 6 vs. Point 2	-2.7186	0.007754	0.00845	0		
Point 6 vs. Point 1	-24.5315	0	0	0.000061		
Point 6 vs. Point 6	0	1	1	1		
Point 6 vs. Point 13	-11.15	0	0	0.042865		
Point 6 vs. Point 12	-21.4518	0	0	0.326583		
Point 6 vs. Point 7	-25.8653	0	0	0.004387		
Point 6 vs. Point 17	-21.6381	0	0	0.877869		
Point 6 vs. Point 18	-7.3053	0	0	0.111488		
Point 6 vs. Point 4	-10.4041	0	0	0.03956		
Point 6 vs. Point 5	-1.2735	0.20584	0.206002	0.100897		
Point 6 vs. Point 9	-22.1885	0	0	0.000001		
Point 6 vs. Point 8	-10.633	0	0	0.263477		
Point 6 vs. Point 10	-21.4787	0	0	0.517237		
Point 6 vs. Point 11	-19.8489	0	0	0.028995		
Point 6 vs. Point 16	-5.9855	0	0	0		
Point 6 vs. Point 14	-22.7521	0	0	0.587927		
Point 6 vs. Point 15	0.7831	0.435436	0.435868	0.000376		
Point 12 vs. Point 4	8.6147	0	0	0.276416		
Point 12 vs. Point 5	17.9085	0	0	0.50609		
Point 12 vs. Point 9	6.494	0	0	0		
Point 12 vs. Point 8	13.0943	0	0	0.036829		
Point 12 vs. Point 10	0.5191	0.604871	0.604874	0.738006		
Point 12 vs. Point 11	-0.5461	0.58626	0.586297	0.224105		
Point 12 vs. Point 16	21.7273	0	0	0		
Point 12 vs. Point 14	1.1656	0.246589	0.24672	0.128824		

Doint 12 yrs Doint 15	25.0576	0	0	0.000008	
Point 12 vs. Point 15	25.9576		~	0.000008	
Point 7 vs. Point 3	28.3174	0	0	0.033543	
Point 7 vs. Point 2	36.725	0	0	0.000246	
Point 7 vs. Point 1	3.4356	0.000869	0.000878	0.219155	
Point 7 vs. Point 6	25.8653	0	0	0.004387	
Point 7 vs. Point 13	17.146	0	0	0.396275	
Point 7 vs. Point 12	-1.2948	0.198433	0.199206	0.000158	
Point 7 vs. Point 7	0	1	1	1	
Point 7 vs. Point 17	0.6177	0.538174	0.538374	0.006911	
Point 7 vs. Point 18	20.9632	0	0	0.198268	
Point 7 vs. Point 4	9.0306	0	0	0.000002	
Point 7 vs. Point 5	20.2561	0	0	0.000011	
Point 7 vs. Point 9	7.8169	0	0	0.0277	
Point 7 vs. Point 8	15.8076	0	0	0.078634	
Point 7 vs. Point 10	-0.6972	0.487315	0.487676	0.00053	
Point 7 vs. Point 11	-1.7714	0.07961	0.080819	0.000001	
Point 7 vs. Point 16	32.3654	0	0	0.000132	
Point 7 vs. Point 14	0.0026	0.99795	0.99795	0.020076	
Point 7 vs. Point 15	35.9346	0	0	0.456669	
Point 4 vs. Point 3	6.7538	0	0	0	
Point 4 vs. Point 2	10.3786	0	0	0	
Point 4 vs. Point 1	-7.2701	0	0	0	
Point 4 vs. Point 6	10.4041	0	0	0.03956	
Point 4 vs. Point 13	2.2994	0.023607	0.024214	0.000063	
Point 4 vs. Point 12	-8.6147	0	0	0.276416	
Point 4 vs. Point 7	-9.0306	0	0	0.000002	
Point 4 vs. Point 17	-7.7	0	0	0.027212	
Point 4 vs. Point 18	5.1922	0.000001	0.000002	0.000328	
Point 4 vs. Point 4	0	1	1	1	
Point 4 vs. Point 5	8.3267	0	0	0.670808	
Point 4 vs. Point 9	-5.0093	0.000002	0.000005	0	
Point 4 vs. Point 8	2.1889	0.030982	0.031424	0.001686	
Point 4 vs. Point 10	-8.311	0	0	0.15553	
Point 4 vs. Point 11	-8.4494	0	0	0.898037	
Point 4 vs. Point 16	7.9072	0	0	0	
Point 4 vs. Point 14	-8.2888	0	0	0.009718	
Point 4 vs. Point 15	12.4771	0	0	0	
Point 13 vs. Point 3	6.8841	0	0	0.003205	
Point 13 vs. Point 2	13.096	0	0	0.000009	
Point 13 vs. Point 1	-15.2054	0	0	0.038811	
Point 13 vs. Point 6	11.15	0	0	0.042865	
Point 13 vs. Point 13	0	1	1	1	
	-13.7047	0	0	0.002915	

Point 13 vs. Point 7	-17.146	0	0	0.396275	
Point 13 vs. Point 17	-13.2953	0	0	0.06089	
Point 13 vs. Point 18	4.2006	0.000059	0.000059	0.659458	
Point 13 vs. Point 4	-2.2994	0.023607	0.024214	0.000063	
Point 13 vs. Point 5	8.0634	0	0	0.00031	
Point 13 vs. Point 9	-12.0614	0	0	0.002513	
Point 13 vs. Point 8	-0.0466	0.96296	0.962962	0.358972	
Point 13 vs. Point 10	-13.5472	0	0	0.007926	
Point 13 vs. Point 11	-12.6687	0	0	0.000038	
Point 13 vs. Point 16	8.9948	0	0	0.000004	
Point 13 vs. Point 14	-14.3734	0	0	0.135842	
Point 13 vs. Point 15	15.5469	0	0	0.112391	
Point 12 vs. Point 3	19.951	0	0	0	
Point 12 vs. Point 2	24.5431	0	0	0	
Point 12 vs. Point 1	3.6625	0.000405	0.000479	0.000001	
Point 12 vs. Point 6	21.4518	0	0	0.326583	
Point 12 vs. Point 13	13.7047	0	0	0.002915	
Point 12 vs. Point 12	0	1	1	1	
Point 12 vs. Point 7	1.2948	0.198433	0.199206	0.000158	
Point 12 vs. Point 17	1.6202	0.108404	0.108488	0.256871	
Point 12 vs. Point 18	16.7121	0	0	0.010694	

Both for A frequency range (Table 1.) and C frequency range (Table 2.), the values of the parameter t have significant values (large values) for all data series, with two small exceptions, which indicates that the differences are significant, that is, the analyzed points are different and can be used as fingerprints for identifying places.

Pearson correlations were also performed between all data series corresponding to the Aweighting filter (Table 3) and separately between all data series on C Channel corresponding to the Cweighting filter (Table 4). The closer Pearson coefficient, r, is to 1, the stronger the correlation between the data series [8].

For a correct interpretation, the Pearson correlation coefficient is accompanied by a significance test. In the significance test, p represents the level of confidence factor. The Pearson coefficient has statistical significance only if the value level of confidence factor, p, is smaller than 0.05[8].

In tables 3 and 4, each measurement point has two rows. The first row indicates the values of the Pearson coefficient, r, while the second row represents the values of the of confidence facto, p.

From the values of the Pearson coefficient, r, and the parameter p, it follows that there are no strong correlations between the data series, fact that proves that there are significant differences from one measured series to another and there are no repeating patterns. It can be said that the traffic level is running randomly.

Table 3. Pearson Correlations for sound intensity level values corresponding to the A-weighting filter

Variable	Point 3	Point 2	Point 1	Point 6	Point 13	Point 12	Point 7	Point 17	Point 18	Point 4	Point 5	Point 9	Point 8	Point 10	Point 11	Point 16	Point 14	Point 15
	1	0.1787	-0.352	0.180	0.0452	-0.354	-0.031	0.0559	-0.122	0.0793	0.0587	-0.182	0.0829	0.2534	-0.1985	-0.3135	0.2236	-0.158
Point 3	p=	p=.214	p=.012	p=.211	p=.755	p=.012	p=.832	p=.700	p=.400	p=.584	p=.686	p=.207	p=.567	p=.076	p=.167	p=.027	p=.119	p=.275
	0.179	1	-0.120	-0.046	-0.058	-0.001	0.0534	0.0189	-0.183	0.0002	0.0173	-0.08	0.0892	0.0614	-0.1763	-0.1265	-0.322	0.0857
Point 2	p=.214	p=	p=.405	p=.751	p=.690	p=.996	p=.713	p=.896	p=.205	p=.999	p=.905	p=.582	p=.538	p=.672	p=.221	p=.381	p=.023	p=.554
D	-0.352	-0.120	1	-0.109	-0.038	0.608	-0.184	-0.379	0.2226	-0.139	-0.134	0.3204	0.2053	0.1687	0.2661	0.3648	-0.199	0.4743
Point 1	p=.012	p=.405	p=	p=.451	p=.795	p=.000	p=.201	p=.007	p=.120	p=.336	p=.354	p=.023	p=.153	p=.241	p=.062	p=.009	p=.166	p=.001
Disc	0.180	-0.046	-0.109	1	0.0842	-0.225	-0.043	0.1341	0.0803	0.0688	-0.079	-0.117	-0.0845	0.0478	-0.0855	-0.2712	0.1535	0.0504
Point 6	p=.211	p=.751	p=.451	p=	p=.561	p=.116	p=.768	p=.353	p=.579	p=.635	p=.584	p=.418	p=.560	p=.741	p=.555	p=.057	p=.287	p=.728
Point 13	0.0452	-0.058	-0.038	0.084	1	-0.232	0.0621	0.1109	-0.195	-0.139	0.0736	-0.082	-0.1933	0.1165	0.0333	0.3069	0.1896	-0.184
Point 15	p=.755	p=.690	p=.795	p=.561	p=	p=.105	p=.668	p=.443	p=.176	p=.335	p=.612	p=.571	p=.179	p=.420	p=.819	p=.030	p=.187	p=.202
Point 12	-0.354	-0.001	0.608	-0.225	-0.232	1	-0.355	-0.173	0.1513	0.2666	-0.164	0.322	0.3721	0.1638	0.4325	0.1209	-0.485	0.2948
Foline 12	p=.012	p=.996	p=.000	p=.116	p=.105	p=	p=.012	p=.229	p=.294	p=.061	p=.256	p=.023	p=.008	p=.256	p=.002	p=.403	p=.000	p=.038
Point 7	-0.0308	0.0534	-0.184	-0.043	0.0621	-0.355	1	0.1941	0.0178	-0.292	-0.128	0.0286	-0.1054	-0.13	-0.0917	-0.0038	0.2615	-0.243
Foline 7	p=.832	p=.713	p=.201	p=.768	p=.668	p=.012	p=	p=.177	p=.903	p=.040	p=.374	p=.844	p=.466	p=.368	p=.526	p=.979	p=.067	p=.089
Point 17	0.0559	0.0189	-0.379	0.134	0.1109	-0.173	0.1941	1	-0.232	0.3451	-0.207	0.238	-0.0529	0.0164	0.3017	-0.2809	0.0325	-0.323
rom 17	p=.700	p=.896	p=.007	p=.353	p=.443	p=.229	p=.177	p=	p=.105	p=.014	p=.149	p=.096	p=.715	p=.910	p=.033	p=.048	p=.823	p=.022
Point 18	-0.1217	-0.1824	0.223	0.080	-0.195	0.1513	0.0178	-0.232	1	-0.2057	0.2162	0.1147	0.2199	-0.042	-0.0877	0.1194	0.0369	0.4277
rom 18	p=.400	p=.205	p=.120	p=.579	p=.176	p=.294	p=.903	p=.105	p=	p=.152	p=.132	p=.428	p=.125	p=.772	p=.545	p=.409	p=.799	p=.002
Point 4	0.0793	0.0002	-0.139	0.0688	-0.139	0.2666	-0.292	0.3451	-0.206	1	-0.171	0.1884	0.2169	0.2957	0.4353	-0.2454	-0.226	-0.203
T OILIT 4	p=.584	p=.999	p=.336	p=.635	p=.335	p=.061	p=.040	p=.014	p=.152	p=	p=.234	p=.190	p=.130	p=.037	p=.002	p=.086	p=.115	p=.157
Point 5	0.0587	0.0173	-0.134	-0.079	0.0736	-0.164	-0.128	-0.207	0.2162	-0.171	1	-0.157	0.0111	0.0065	-0.3306	0.3886	0.0175	0.1367
Tome 5	p=.686	p=.905	p=.354	p=.584	p=.612	p=.256	p=.374	p=.149	p=.132	p=.234	p=	p=.276	p=.939	p=.964	p=.019	p=.005	p=.904	p=.344
Point 9	-0.1816	-0.08	0.3204	-0.117	-0.082	0.322	0.0286	0.238	0.1147	0.1884	-0.157	1	-0.0044	0.2269	0.4431	-0.0592	-0.260	0.2377
T OILT 9	p=.207	p=.582	p=.023	p=.418	p=.571	p=.023	p=.844	p=.096	p=.428	p=.190	p=.276	p=	p=.976	p=.113	p=.001	p=.683	p=.068	p=.096
Point 8	0.0829	0.0892	0.2053	-0.085	-0.193	0.3721	-0.105	-0.053	0.2199	0.2169	0.0111	-0.004	1	0.0954	-0.0549	-0.0515	-0.257	0.149
T OILL O	p=.567	p=.538	p=.153	p=.560	p=.179	p=.008	p=.466	p=.715	p=.125	p=.130	p=.939	p=.976	p=	p=.510	p=.705	p=.722	p=.072	p=.302
Point 10	0.2534	0.0614	0.1687	0.0478	0.1165	0.1638	-0.13	0.0164	-0.042	0.2957	0.0065	0.2269	0.0954	1	0.2637	-0.0624	-0.01	-0.024
10111110	p=.076	p=.672	p=.241	p=.741	p=.420	p=.256	p=.368	p=.910	p=.772	p=.037	p=.964	p=.113	p=.510	p=	p=.064	p=.667	p=.946	p=.867
Point 11	-0.1985	-0.176	0.2661	-0.086	0.0333	0.4325	-0.092	0.3017	-0.088	0.4353	-0.331	0.4431	-0.0549	0.2637	1	-0.0493	-0.172	0.0953
Tome II	p=.167	p=.221	p=.062	p=.555	p=.819	p=.002	p=.526	p=.033	p=.545	p=.002	p=.019	p=.001	p=.705	p=.064	p=	p=.734	p=.232	p=.510
Point 16	-0.3135	-0.127	0.3648	-0.271	0.3069	0.1209	-0.004	-0.281	0.1194	-0.245	0.3886	-0.059	-0.0515	-0.0624	-0.0493	1	0.0465	0.1351
1011110	p=.027	p=.381	p=.009	p=.057	p=.030	p=.403	p=.979	p=.048	p=.409	p=.086	p=.005	p=.683	p=.722	p=.667	p=.734	p=	p=.749	p=.349
Point 14	0.2236	-0.322	-0.199	0.1535	0.1896	-0.485	0.2615	0.0325	0.0369	-0.226	0.0175	-0.260	-0.2565	-0.0098	-0.1722	0.0465	1	-0.082
1011114	p=.119	p=.023	p=.166	p=.287	p=.187	p=.000	p=.067	p=.823	p=.799	p=.115	p=.904	p=.068	p=.072	p=.946	p=.232	p=.749	p=	p=.570
Point 15	-0.1575	0.0857	0.4743	0.0504	-0.184	0.2948	-0.243	-0.323	0.4277	-0.203	0.1367	0.2377	0.149	-0.0243	0.0953	0.1351	-0.0822	1
rom 15	p=.275	p=.554	p=.001	p=.728	p=.202	p=.038	p=.089	p=.022	p=.002	p=.157	p=.344	p=.096	p=.302	p=.867	p=.510	p=.349	p=.570	p=

Table 4. Pearson Correlations for sound intensity level values corresponding	g to the	C-weighting fil	ter
--	----------	-----------------	-----

Variable	Point 3	Point 2	Point 1	Point 6	Point 13	Point 12	Point 7	Point 17	Point 18	Point 4	Point 5	Point 9	Point 8	Point 10	Point 11	Point 16	Point 14	Point 15
D 1 - 0	1	-0.03	0.0784	0.1292	-0.103	-0.1603	-0.291	-0.1559	0.0857	0.076	-0.017	-0.16	-0.031	-0.018	0.1984	0.129	0.243	0.1544
Point 3	p=	p=.838	p=.588	p=.371	p=.477	p=.266	p=.040	p=.280	p=.554	p=.600	p=.905	p=.260	p=.832	p=.902	p=.167	p=.372	p=.089	p=.284
D i z 2	-0.03	1	-0.232	-0.054	0.0041	0.1771	-0.05	0.0421	-0.0183	-0.205	0.2358	0.198	-0.118	0.034	-0.1271	0.0561	0.18	0.173
Point 2	p=.838	p=	p=.105	p=.711	p=.977	p=.218	p=.732	p=.772	p=.900	p=.154	p=.099	p=.168	p=.413	p=.814	p=.379	p=.699	p=.212	p=.230
Delet 1	0.0784	-0.232	1	0.0018	-0.044	0.1901	0.04	0.1008	0.0717	0.164	-0.198	-0.21	0.1833	-0.046	0.2276	0.0451	0.183	-0.0014
Point 1	p=.588	p=.105	p=	p=.990	p=.760	p=.186	p=.781	p=.486	p=.621	p=.255	p=.168	p=.147	p=.203	p=.752	p=.112	p=.756	p=.203	p=.992
Doint 6	0.1292	-0.054	0.0018	1	-0.357	0.1492	-0.111	-0.073	-0.0122	-0.191	0.1448	0.132	0.0225	-0.208	0.2405	-0.0707	0.34	0.2279
Point 6	p=.371	p=.711	p=.990	p=	p=.011	p=.301	p=.442	p=.615	p=.933	p=.184	p=.316	p=.360	p=.877	p=.147	p=.092	p=.626	p=.016	p=.111
Point 13	-0.103	0.0041	-0.044	-0.357	1	-0.0972	0.232	0.2258	-0.0948	0.05	0.2395	-0.11	0.0362	0.293	-0.2531	0.2052	-0.512	-0.1208
Poliit 15	p=.477	p=.977	p=.760	p=.011	p=	p=.502	p=.105	p=.115	p=.512	p=.730	p=.094	p=.460	p=.803	p=.039	p=.076	p=.153	p=.000	p=.403
Point 12	-0.161	0.1771	0.1901	0.1492	-0.097	1	-0.193	0.0152	0.2597	-0.607	0.2806	0.384	0.2245	0.047	-0.3596	0.3256	0.323	0.3082
Folint 12	p=.266	p=.218	p=.186	p=.301	p=.502	p=	p=.178	p=.917	p=.069	p=.000	p=.048	p=.006	p=.117	p=.746	p=.010	p=.021	p=.022	p=.029
Point 7	-0.291	-0.05	0.0404	-0.111	0.2318	-0.1934	1	0.1326	-0.2757	0.46	-0.075	0.091	-0.044	-0.289	0.1021	-0.5433	-0.378	-0.3959
ronn /	p=.040	p=.732	p=.781	p=.442	p=.105	p=.178	p=	p=.359	p=.053	p=.001	p=.604	p=.530	p=.760	p=.042	p=.481	p=.000	p=.007	p=.004
Point 17	-0.156	0.0421	0.1008	-0.073	0.2258	0.0152	0.133	1	-0.1017	0.019	0.1443	-0.26	0.2614	0.06	-0.1985	0.046	-0.368	-0.1223
1 oline 17	p=.280	p=.772	p=.486	p=.615	p=.115	p=.917	p=.359	p=	p=.482	p=.894	p=.317	p=.074	p=.067	p=.681	p=.167	p=.751	p=.008	p=.397
Point 18	0.0857	-0.018	0.0717	-0.012	-0.095	0.2597	-0.276	-0.1017	1	-0.249	-0.008	0.178	0.2657	0.116	0.0874	0.0958	0.29	0.2373
1 oliit 10	p=.554	p=.900	p=.621	p=.933	p=.512	p=.069	p=.053	p=.482	p=	p=.082	p=.957	p=.218	p=.062	p=.421	p=.546	p=.508	p=.041	p=.097
Point 4	0.076	-0.205	0.1641	-0.191	0.05	-0.6072	0.46	0.0193	-0.2487	1	-0.215	-0.18	-0.283	-0.179	0.3573	-0.5211	-0.306	-0.4047
I oliit 4	p=.600	p=.154	p=.255	p=.184	p=.730	p=.000	p=.001	p=.894	p=.082	p=	p=.134	p=.213	p=.046	p=.214	p=.011	p=.000	p=.031	p=.004
Point 5	-0.0174	0.2358	-0.198	0.1448	0.2395	0.2806	-0.075	0.1443	-0.0077	-0.215	1	0.195	0.1523	0.185	-0.0982	0.1724	-0.009	-0.0572
I olin 5	p=.905	p=.099	p=.168	p=.316	p=.094	p=.048	p=.604	p=.317	p=.957	p=.134	p=	p=.174	p=.291	p=.198	p=.498	p=.231	p=.949	p=.693
Point 9	-0.162	0.1979	-0.208	0.1323	-0.107	0.3837	0.091	-0.255	0.1775	-0.179	0.1952	1	0.1073	-0.26	-0.2045	-0.1349	0.175	0.0419
Tollit 9	p=.260	p=.168	p=.147	p=.360	p=.460	p=.006	p=.530	p=.074	p=.218	p=.213	p=.174	p=	p=.458	p=.068	p=.154	p=.350	p=.226	p=.773
Point 8	-0.031	-0.118	0.1833	0.0225	0.0362	0.2245	-0.044	0.2614	0.2657	-0.283	0.1523	0.107	1	0.044	-0.0501	0.2375	-0.058	0.1979
I oline o	p=.832	p=.413	p=.203	p=.877	p=.803	p=.117	p=.760	p=.067	p=.062	p=.046	p=.291	p=.458	p=	p=.763	p=.730	p=.097	p=.688	p=.168
Point 10	-0.018	0.0341	-0.046	-0.208	0.2932	0.047	-0.289	0.0595	0.1163	-0.179	0.185	-0.26	0.0437	1	-0.2088	0.3007	-0.05	-0.1301
I oline 10	p=.902	p=.814	p=.752	p=.147	p=.039	p=.746	p=.042	p=.681	p=.421	p=.214	p=.198	p=.068	p=.763	p=	p=.146	p=.034	p=.728	p=.368
Point 11	0.1984	-0.127	0.2276	0.2405	-0.253	-0.3596	0.102	-0.1985	0.0874	0.357	-0.098	-0.2	-0.05	-0.209	1	-0.471	0.307	-0.0727
I olik I I	p=.167	p=.379	p=.112	p=.092	p=.076	p=.010	p=.481	p=.167	p=.546	p=.011	p=.498	p=.154	p=.730	p=.146	p=	p=.001	p=.030	p=.616
Point 16	0.129	0.0561	0.0451	-0.0707	0.2052	0.3256	-0.543	0.046	0.0958	-0.521	0.1724	-0.13	0.2375	0.301	-0.471	1	0.079	0.4126
Tollit To	p=.372	p=.699	p=.756	p=.626	p=.153	p=.021	p=.000	p=.751	p=.508	p=.000	p=.231	p=.350	p=.097	p=.034	p=.001	p=	p=.584	p=.003
Point 14	0.2432	0.1798	0.1831	0.34	-0.512	0.3227	-0.378	-0.3684	0.2903	-0.306	-0.009	0.175	-0.058	-0.05	0.3069	0.0793	1	0.1919
1 01111 14	p=.089	p=.212	p=.203	p=.016	p=.000	p=.022	p=.007	p=.008	p=.041	p=.031	p=.949	p=.226	p=.688	p=.728	p=.030	p=.584	p=	p=.182
Point 15	0.1544	0.173	-0.0014	0.2279	-0.121	0.3082	-0.396	-0.1223	0.2373	-0.405	-0.057	0.042	0.1979	-0.13	-0.0727	0.4126	0.192	1
1 June 15	p=.284	p=.230	p=.992	p=.111	p=.403	p=.029	p=.004	p=.397	p=.097	p=.004	p=.693	p=.773	p=.168	p=.368	p=.616	p=.003	p=.182	p=

4. CONCLUSIONS

In this article, the level of noise pollution in the city of Galati was determined. For this purpose, the sound level was measured in 18 points in the city of Galati with the help of a professional digital acoustic sound level meter with two frequency weighting filters: "A" and "C". The values obtained for the sound level at the edge of the pavement bordering the carriageway are generally lower or equal to the maximum admissible value of 70dB. The values of the noise level outside the building, measured 2 m from the facade, exceeded the value of 50dB.

From the calculated Pearson matrices it emerges that that there are no repeating patterns. It can be said that the traffic level is running randomly.

Also the t-test for independent samples indicates that the differences are significant, that means the analyzed points are different and can be used as fingerprints for identifying places.

References

- 1. Noise pollution is a major problem, both for human health and the environment, European Environment Agency Newsletter 01(2020).
- 2. Health impacts of exposure to environmental noise, EEA Report 22 (2019) 45-52.
- 3. Schiopu N., Bardac D.I., Noise and its effects, AMT, vol II, 1 (2012) 117-118.
- 4. A, B, and C Contour Filters for Sound Measurement. hyperphysics.phy-astr.gsu.edu.
- 5. STAS 10009-17, Acoustics in constructions. Urban acoustics. Admissible noise level limits, 2017.
- 6. STAS 6161-1:2008, Acoustics in constructions, 2008.
- 7. Independent t-test for two samples, Laerd Statistics, Lund Research Ltd, 2018.
- Drasovean R., Murariu G., Water Quality Parameters and Monitoring Soft Surface Water Quality Using Statistical Approaches, in: Promising Techniques for Wastewater Treatment and Water Quality Assessment (Moujdin A. and Kevin Summers J., Editors), Intechopen 217, 2021. DOI: 10.5772/intechopen.97372.