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Abstract 

In this paper, we provide a geometric characterization of a V-harmonic map and establish conditions that relate 

the V-harmonicity of a map to the V-minimality of its fibers. 
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1. INTRODUCTION  

 
Let φ:M→N be a smooth map between Riemannian manifolds, and let V be a smooth vector 

field on the source manifold. Chen, Jost, and Wang [4] introduced the notion of a V-harmonic map using 

the condition:  

𝜏𝑉(𝜑): = 𝜏(𝜑) + 𝑑𝜑(𝑉) = 0,  
 

where 𝜏(𝜑) is the tension field. Zhao, see [Z], established the relationship between the notions of V- 

harmonicity of a map and the minimality of its fibers. The existence of the vector field V on the source 

manifold plays an important role in the definition of V-minimal submanifolds, a notion introduced in 

[1], which is a natural extension of the classical concept. A V-minimal submanifold is defined by: 

𝑡𝑟𝑎𝑐𝑒 (𝐴) − 𝑉 is a tangent vector field to the submanifold, 

 

where A is the second fundamental form of the submanifold. 

As in the case of V-harmonicity, where for 𝑉 = 0, V-harmonicity and harmonicity coincide, V-

minimality is equivalent to minimality when the vector field V is zero. 

The outline of the paper is as follows. First, we recall some basic notions needed for our study, 

including the second fundamental form of a submanifold, horizontally conformal maps, mean curvature, 

and V-harmonic maps, along with some of their properties. Then, we give a geometric characterization 

of V-harmonic maps (Theorem 3.3) and we establish the relationship between V-harmonicity of a map 

and the V-minimality of its fibers(Theorem 3.2). 

 

 

2. V- HARMONIC MAPS 

 

In this section we recall basic facts about V-harmonic maps and their properties, which will be 

used in the sequel. 

Let (𝑀𝑚, 𝑔) and (𝑁𝑛, ℎ) be two Riemannian manifolds of dimensions m and n, respectively. 
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Considering a smooth function f: M→ R, the gradient of f, denoted by grad ( f ) or 𝛻𝑓 (see, for example, 

[3] or [9]),  is the vector field characterized as follows: g(grad f, X)=df (X)=X f, for any vector field X 

in M. 

Let φ:M→N be a smooth map between the Riemannian manifolds. 

For the vector bundle 𝑇𝑁 → 𝑁, the pull-back bundle 𝜑−1𝑇𝑁 → 𝑀, has fibers given by (𝜑−1𝑇𝑁)𝑥 =
𝑇𝑥𝑁, 𝑥 ∈ 𝑀. The connection on the pull-back bundle, denoted by ∇𝜑, is the unique linear connection 

such that, for any section 𝜎 on the tangent bundle 𝑇𝑁, ∇𝑋
𝜑(𝜎 ∘ 𝜑) = ∇𝑑𝜑(𝑋)

𝑁 (𝜎), where 𝜎 ∘ 𝜑 is a section 

on the pull-back bundle 𝜑−1𝑇𝑁, ∇𝑁 is the connection on the vector bundle 𝑇𝑁 → 𝑁 (see example [3]). 

Considering the bundle 𝐻𝑜𝑚 (𝑇𝑀, 𝜑−1𝑇𝑁) → 𝑀 (where 𝑑𝜑 can be viewed as a section of it), it has a 

connection ∇ induced by the Levi-Civita connection of M, ∇𝑀 , and the pull-back connection described 

above. Applying this connection to 𝑑𝜑, we define the second fundamental form of 𝜑 (see, for example, 

[3]). For any vector fields X, Y in M, 

 

∇𝑑𝜑(𝑋, 𝑌) = ∇𝑋
𝜑

(𝑑𝜑(𝑌)) − 𝑑𝜑(∇𝑋
𝑀𝑌). (1) 

 

Using the second fundamental form of a map 𝜑, one can define the tension field of the map 𝜑, as follows: 

 

𝜏(𝜑) = 𝑡𝑟𝑎𝑐𝑒 ∇𝑑𝜑. 
 

Note that 𝜏(𝜑) is a section on the pull-back bundle 𝜑−1𝑇𝑁. 
At any point 𝑥 ∈ 𝑀, define (see [3]) the vertical space of φ at x as Ѵ𝑥 = ker 𝑑𝜑𝑥  ,and the horizontal 

space of φ at x as its orthogonal complement: ℋ𝑥 = Ѵ𝑥
⊥. For any point 𝑥 ∈ 𝑀that is not a critical point 

(i.e. the inequality  𝑟𝑎𝑛𝑘 𝑑𝜑𝑥 < min{𝑚, 𝑛} is not satisfied), the assignment ℋ: 𝑥 → ℋ𝑥  define a 

smooth distribution called the horizontal distribution, and the assignment Ѵ: 𝑥 → Ѵ𝑥 define the vertical 

distribution. 

For each x ∈ M, 𝜑−1(𝜑(𝑥)) is called the fiber through x and Ѵ𝑥, and for x that is not a critical point, 

gives the tangent space to the fibre through x. 

Let x ∈ M be any point. The map φ is called horizontally conformal at x (see [3]) if:   

 

𝑑𝜑𝑥: 𝑇𝑥𝑀|ℋ𝑥×ℋ𝑥 
→ 𝑇𝜑(𝑥) 𝑁 

 

is a surjective map and there exists a positive function λ(x), called the dilation of φ at x, such that for 

any horizontal vector fields X, Y on M, the following equation holds true: 

 

ℎ(𝑑𝜑𝑥(𝑋), 𝑑𝜑𝑥(𝑌)) = 𝜆2(𝑥)𝑔(𝑋, 𝑌). 

 

In is known (see [6], [3], [9]) that for a Riemannian manifold (Mm, g) and S a submanifold of 

M, for any point 𝑥 ∈ 𝑆, with respect to the metric g, there is an orthogonal decomposition of the tangent 

bundle: 

𝑇𝑥𝑀 = 𝑇𝑥𝑆 ⊕ 𝑇𝑥𝑆⊥. 

Moreover,  

 

           ∇𝑋
𝑀𝑌 = ∇𝑋

𝑆 𝑌 + 𝐴(𝑋, 𝑌), (2) 

 

for all vector fields X, Y on S, where ∇𝑀 and ∇𝐾 denote the Levi-Civita connections on M and N, 

respectively. 

The map 𝐴: 𝑇𝑆 × 𝑇𝑆 → 𝑇𝑆⊥  is a bilinear one, called the second fundamental form of the submanifold 

S. 

At each point x of the submanifold S, let us consider the normal vector to the submanifold (see [6], [3], 

[9]): 
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𝜇Ѵ =
1

𝑞
∑ 𝐴(𝑒𝑖, 𝑒𝑖),

𝑞

𝑟=1
 

(3) 

 

where {𝑒1, 𝑒2, … , 𝑒𝑞} is an orthonormal basis for 𝑇𝑥𝑆. This vector is called the mean curvature of the 

submanifold S in x. 

 

We underline the fact that, when we consider inclusion maps of submanifolds or isometric 

immersions, the second fundamental form of a map, as defined in equation (1), coincides with the second 

fundamental form of a submanifold, as given in equation (2). 

In what follows, we will consider the case where the submanifold S is a fiber of a smooth map 

φ:M→N between Riemannian manifolds. 

 

Eells and Sampson (see [5]) proved that the harmonicity of a smooth map is equivalent to the 

vanishing of its tension field. 

When introducing a vector field V on the source manifold of a smooth map between Riemannian 

manifolds, the notion of harmonicity can be extended, in a natural way, to V-harmonicity. 

 

DEFINITION 2.1 (see [4], [10]) Let  𝜑: 𝑀 →  𝑁 be a smooth map between two Riemannian 

manifolds (Mm, g) and (Nn , h), and let V be a smooth vector field on M. 

 𝜑 is called V-harmonic if the V-tension field of 𝜑 vanishes, i.e. 

 

𝜏𝑉(𝜑): = 𝜏(𝜑) + 𝑑𝜑(𝑉) = 0, 
 

where 𝜏(𝜑) is the tension field of the map 𝜑. 
 

 P. Baird and J. C. Wood (see Proposition 4.5.3, [3]) found for the tension field of a smooth 

horizontally conformal submersion between Riemannian manifolds an expression using the mean 

curvature of its fibers and the gradient of its dilation. More precisely, if 𝜑: 𝑀𝑚 → 𝑁𝑛 is a smooth 

horizontally conformal submersion with dilation 𝜆: 𝑀 → (0, ∞) and 𝜇Ѵ the mean curvature of its fibers, 

then: 

 

𝜏(𝜑) = −(𝑛 − 2)𝑑𝜑(𝑔𝑟𝑎𝑑 ln 𝜆) − (𝑚 − 𝑛)𝑑𝜑(𝜇Ѵ). (4) 

 

Using equation (4), Baird and Eells (see [2]) provided the following characterization of a 

harmonic map: 

 

PROPOSITION 2.2 ([2]) Let (𝑀𝑚, 𝑔) and (𝑁𝑛, ℎ) be two Riemannian manifolds, and let 

𝜑: 𝑀𝑚 → 𝑁𝑛 be a non-constant horizontally conformal map with dim 𝑁 > 3 and dilation 𝜆. Then, any 

two of the following statements imply the third: 

1) 𝜑 is a harmonic map; 

2) 𝑔𝑟𝑎𝑑 𝜆 is a vertical vector field; 

3) the fibers of 𝜑 are minimal. 

 

Zhao ([10]) found a similar expression forthe V-tension field of a smooth horizontally conformal 

submersion 𝜑: 𝑀𝑚 → 𝑁𝑛 with a smooth vector field V on M: 

 

𝜏𝑉(𝜑) = 𝑑𝜑(𝑉 + grad(log 𝜆2−𝑛)) − (𝑚 − 𝑛)𝑑𝜑(𝜇Ѵ ). (5) 

 

A characterization similar to Proposition 2.2, was given in [10]: 

 

PROPOSITION 2.3 ([10]) Let 𝜑: 𝑀𝑚 → 𝑁𝑛 be a horizontally conformal map between 

Riemannian manifolds, with dilation 𝜆: 𝑀 → (0, ∞). Then, any two of the following assertions imply 

the third: 
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1) 𝜑 is a V-harmonic map; 

2) 𝑉 + grad(log 𝜆2−𝑛) is vertical; 

3) the fibers of 𝜑 are minimal. 

 

 

3. GEOMETRIC CHARACTERIZATION OF V-HARMONIC MAPS 
 

Considering a Riemannian manifold (𝑀𝑚, 𝑔), let S be a submanifold on M, V a smooth vector 

field on M, and A the second fundamental form of the submanifold S in M. in [1] we define the notion 

of V- minimality of a submanifold. 

 

DEFINITION 3.1 [1] The submanifold S is said to be V-minimal if trace (A) – V is a section 

of the tangent bundle TS. 

When considering a differentiable map, and if the submanifold is exactly a fiber of the map, the 

V-minimality can be read/interpreted as: trace (A) – V is a vertical vector. 

 

Using the notions of V-harmonicity and V-minimality, a result similar to Proposition 2.3 can be 

proved. 

THEOREM 3.2 Let (𝑀𝑚, 𝑔) and (𝑁𝑛, ℎ) be two Riemannian manifolds, and let 𝜑: 𝑀𝑚 → 𝑁𝑛 

be a horizontally conformal submersion, where 𝑛 ≥ 3. Let 𝑉 be a smooth vector field on 𝑀 , and let 

𝜆: 𝑀 → (0, ∞) denote the dilation of 𝜑. Then, any two of the following statements imply the third: 

1) 𝜑 is a V-harmonic map; 

2) grad (log 𝜆2−𝑛) is a vertical vector field; 

3) the fibres of 𝜑 are V-minimal.  

 

Proof: 

Let 𝑥 ∈ 𝑀,  Ѵ𝑥 = ker 𝑑𝜑𝑥  denote the vertical space of 𝜑 at x, and ℋ𝑥 = Ѵ𝑥
⊥ the horizontal 

space of 𝜑 at x. Then, with respect to 𝑔, we have the orthogonal decomposition of the tangent vector 

bundle 𝑇𝑀: 
 

𝑇𝑥𝑀 = Ѵ𝑥  ⨁ℋ𝑥, 
 

where the vertical distribution has dimension 𝑚 − 𝑛, and the horizontal distribution has dimension 𝑛. 
Taking into account (1), (2) and (3), the mean curvature of the fiber is: 

 

𝜇Ѵ =
1

𝑚 − 𝑛
 𝑡𝑟𝑎𝑐𝑒 (A) ⇒ 𝑡𝑟𝑎𝑐𝑒 (A) = (𝑚 − 𝑛)𝜇Ѵ 

(6) 

 

 

Using equation (6), the equality (5) can be written as follows: 

 

𝜏𝑉(𝜑) = 𝑑𝜑(𝑉) + 𝑑𝜑(grad(log 𝜆2−𝑛)) − (𝑚 − 𝑛)𝑑𝜑(𝜇Ѵ ) = 

 

= 𝑑𝜑(𝑉) − 𝑑𝜑(𝑡𝑟𝑎𝑐𝑒 (A)) + 𝑑𝜑(grad(log 𝜆2−𝑛)) = 

 

= 𝑑𝜑(𝑉 − 𝑡𝑟𝑎𝑐𝑒 (A)) + 𝑑𝜑(grad(log 𝜆2−𝑛)). 

(7) 

 

In (7), 𝜑 being V-harmonic is equivalent to 𝜏𝑉(𝜑) = 0, grad (log 𝜆2−𝑛) being a vertical vector 

field is equivalent to 𝑑𝜑 (grad (log 𝜆2−𝑛)) = 0, and the fibers bein minimal is equivalent to 

𝑑𝜑(𝑉 − 𝑡𝑟𝑎𝑐𝑒 (A)) = 0.  Thus, the conclusion of the theorem follows. 

 

Using the equation (5) a geometric characterization of V-harmonic maps, similar to the one 

found by Baird and Eells (see [2]), can be given. 
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THEOREM 3.3 Let us consider two Riemannian manifolds (𝑀𝑚, 𝑔) and (𝑁𝑛, ℎ), a smooth 

vector field V on 𝑀, and 𝜑: 𝑀𝑚 → 𝑁𝑛 a smooth, non-constant, horizontally conformal map, with 𝑚, 𝑛 ≥
1. Let 𝜆 denote the dilation of 𝜑. Then 𝜑 is V-harmonic if and only if the following equality holds: 

 

ℋ(𝑉) + ℋ(𝑔𝑟𝑎𝑑(log 𝜆2−𝑛)) − 𝑡𝑟𝑎𝑐𝑒(𝐴) = 0, 
 

where  𝐴 denotes the second fundamental form of the fiber. 

 

Proof:  The V-harmonicity condition of 𝜑 (see equation (5)) translates in: 

 

𝑑𝜑(𝑉) + 𝑑𝜑(grad(log 𝜆2−𝑛)) − (𝑚 − 𝑛)𝑑𝜑(𝜇Ѵ ) = 0 

 

which can be written as: 

 

𝑑𝜑[𝑉 + grad(log 𝜆2−𝑛) − (𝑚 − 𝑛)𝜇Ѵ ] = 0 , or 

 

𝑉 + grad(log 𝜆2−𝑛) − (𝑚 − 𝑛)𝜇Ѵ  is a vertical vector field. 

 

The verticality condition of the above vector, is equivalent tosaying that: 

 

ℋ(𝑉) + ℋ(grad(log 𝜆2−𝑛)) − 𝑡𝑟𝑎𝑐𝑒(𝐴) = 0. 
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