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Abstract

This paper employs recurrence plots (RPs) generated from both accelerometer and gyroscope data to analyze
driver behavior. It integrates visualization with quantitative analysis by extracting key recurrence quantification
measures, such as the Recurrence Rate (RR), Determinism (DET), and Laminarity (LAM), to effectively
characterize the dynamics of the time-series signals. The accelerometer and gyroscope data are collected along
three axes. These recurrence-based features facilitate the discrimination between stable, controlled driving
dynamics and irregular, non-deterministic driving behavior. The RPs are generated using a sliding time window.
The epoch length is set to 3000 samples with a window overlap of 80%. The results demonstrate that changes in
driving conditions significantly altered the structure of the recurrence plots, with corresponding variations in the
recurrence quantification RR, DET, and LAM metrics highlighting the sensitivity of these parameters to
behavioral dynamics.

Keywords: Accelerometer, Gyroscope, Sliding Window, Recurrence Plots, Recurrence Matrix Recurrence
Quantification Analysis, Recurrence Rate (RR), Determinism (DET), Laminarity (LAM).

1. INTRODUCTION

A responsible driving style, along with advanced safety technologies and adherence to traffic
laws, is essential for reducing accidents and saving lives. Ongoing driver education and adapting
infrastructure to new challenges are crucial steps toward achieving global and European road safety
objectives.

Recent research confirms that the number of vehicles worldwide is steadily increasing.
According to a recent analysis by Goldman Sachs, the global vehicle fleet is projected to exceed 2
billion by 2040 (Reuters, 2024) [1]. This trend significantly heightens road safety concerns,
particularly as road traffic accidents continue to be a leading cause of death globally, with over 1.19
million fatalities annually. Approximately 12% of these incidents are attributed to driver distraction
(World Health Organization, 2023) [2].
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In this context, advanced methods for analyzing complex time series, such as Recurrence Plots
(RPs) and Recurrence Quantification Analysis (RQA), have shown promise in assessing driving
behavior. RPs enable visualization of recurring patterns in system dynamics, while RQA provides
quantitative indicators, such as Recurrence Rate (RR), Determinism (DET), and Laminarity (LAM),
that describe the stability or unpredictability of driver actions.

In the present study, data collected from accelerometers and gyroscopes, analyzed through
sliding windows, reveal that changes in RR, DET, and LAM are sensitive to variations in driver
behavior. These findings offer a strong foundation for developing intelligent systems to monitor road
safety in real time.

Spiegel [3] introduced a novel method for measuring distances between time series using RPs
and RQA. This approach aims to identify representative prototypes encompassing a broad range of
recurring driving behavior patterns, regardless of sequence. Experiments using real-world Volkswagen
test-drive data demonstrate that this clustering technique identifies recurring patterns more effectively
than Dynamic Time Warping (DTW).

Shahverdy et al. [4] proposed a driver behavior classification method that relies solely on
vehicle signals, such as acceleration, gravity, pedal pressure, speed, and RPM, without visual input.
These signals are transformed into images using the RP technique, and driving behaviors (normal,
aggressive, distracted, drowsy, and drunk) are classified using a Convolutional Neural Network
(CNN). By exploiting spatial dependencies in the recurrence images, the system achieves high
efficiency and low computational cost. Experimental results confirm the system’s capability to issue
timely alerts to drivers, law enforcement, or nearby vehicles in hazardous situations.

Ashgar et al. [5] focused on detecting so-called “Vulnerable Road Users” (VRUs) using only
low-power smartphone sensors. RQA features were extracted from accelerometers, gyroscopes, and
rotation vectors, avoiding the high energy consumption of GPS. Combined with traditional time-
domain features, RQA features were evaluated using Random Forest classifiers for binary, four-class,
and five-class classification tasks. The method achieved 98.34% accuracy using only RQA features
and 98.79% when temporal features were included, outperforming previously reported approaches.

Vlahogianni et al. [6] examined the applicability of RPs and RQA in short-term traffic flow
analysis through three case studies involving univariate and multivariate data. Their results showed
that traffic flow exhibited discontinuous evolution, necessitating robust, pattern-based predictive
models over purely continuous data approaches. The study also found that linking statistical
characteristics of flow with traffic states can enhance forecast accuracy, advocating for multiple
simple models tailored to specific traffic conditions.

RPs and RQA have proven effective in identifying nonlinear and nonstationary patterns in
traffic data, contributing to more accurate predictions and improved model selection.

2. METHOD
2.1. Database and General Study Presentation

The dataset used in this study was published on the Mendeley Data platform by Shardul
Nazirkar [7]. It comprises 14,250 dynamic measurements and provides a controlled environment for
applying the proposed method based on RPs and RQA. The primary objective is to highlight dynamic
distinctions between normal and aggressive driving behaviors.

The algorithm employed in this study is illustrated in Fig. 1.
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Fig. 1. Algorithm for ROA features extraction
Input: Accelerometer and gyroscope data (signals on the X, Y, Z axes)
Output: Recurrence Rate (RR), Determinism (DET), and Laminarity (LAM) indicators
Steps:
1. {Step 1} Import accelerometer and gyroscope data;
2. {Step 2}Apply a sliding time window of 3000 samples with 80% overlap for signal
segmentation;
3. {Step 3} Generate Recurrence Plots (RP) for each data segment;
4. {Step 4} Perform visual analysis of the RPs to identify behavioral patterns (diagonal lines,
scattered points, vertical/horizontal structures);
5. {Step 5} Extract quantitative RQA features: Recurrence Rate (RR), Determinism (DET), and
Laminarity (LAM) from each RP;
6. {Step 6} Record the feature values for each time window;
7. {Step 7} Repeat steps 1—6 for all available data in the experimental set.

Figure 2 summarizes the flowchart of the proposed method.
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Fig. 2. Flowchart of the proposed method
2.2. Mathematical approaches
a) Recurrence Rate (RR) measures the density of recurrence points within a RP [8]:
(1

1
RR = N Z R,
L]
where R represents the elements of the recurrence matrix and N is the size of the matrix.

b) Determinism (DET) quantifies the proportion of recurrence points that form diagonal lines
in a Recurrence Plot, indicating the predictability of the system [8]:

IR(l ©)
DETz—ZH‘“‘" 0

N
> IP()

Where Inin is the minimum diagonal line length (often set to 2 to ignore very short
recurrences),

N is the maximum diagonal line length and P(1) is the probability distribution of diagonal line
lengths. P(l) represents the probability distribution of diagonal line lengths I in the recurrence plot. It
tells us how frequently diagonal lines of a certain length appear.

¢) Laminarity (LAM) measures the proportion of recurrence points forming vertical lines
within a Recurrence Plot, helping to detect laminar phases such as stop-and-go behavior [8]:

9
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Zszv‘“i“ vP(v) )

LAM = S
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Where P(v)is the probability distribution of vertical line lengths ¥, and ¥min is the minimum

vertical line length considered.

The analysis of Recurrence Plots (RPs) is based on the following findings: i) consistent
diagonal lines are indicative of periodic and predictable behavior patterns; ii) scattered points suggest
random behavior or the occurrence of unexpected events; iii) vertical structures typically correspond
to abrupt behavioral changes, such as sudden braking or rapid acceleration [9, 10].

The RQA features are interpreted as follows: i) high DET values (ranging from 0.987 to
0.996) signify predictable and stable driving behavior [9]; ii) elevated LAM values (0.996 to 0.998)
indicate controlled motion, reflecting the absence of abrupt trajectory changes [11]; iii) moderate RR
values (between 0.63 and 0.83) represent a reasonable degree of repetitiveness, with slight variability
likely due to changing traffic conditions [12].

3. RESULTS AND DISCUSSION

The objective of this study is to evaluate the stability of driving behavior using RQA metrics
computed from accelerometer and gyroscope data over multiple time windows. The signals from the
accelerometer (Ox, Oy, Oz) and gyroscope (Gx, Gy, Gz) are labelled in class 0 (normal behavior)
and class 1 (aggressive behavior).

Figure 3 presents some examples of RPs generated based on the accelerometer and gyroscope
data corresponding to the 2, 8 and 18 time windows.

Table 1, 2 and 3 display data obtained for 19 sliding time-windows (5-minute time intervals
with a I-minute time window).

In Table 1, DET values generally ranged between 0.89 and 0.99, with the highest values
gathered on the ACC_X 0 and GYRO_ X 0 channels. Time windows 1, 5, and 13 indicated the most
predictable and stable driving behavior. Conversely, in windows 16—19, DET showed a moderate
decrease across all channels, suggesting slight behavioral instability.

In Table 2, LAM values remained consistently high throughout the recording period, ranging
from 0.92 to 0.99. These consistently higher values indicate a frequent presence of stop-and-go
behaviors. Among all channels, ACC_X 0 and GYRO_ X 0 exhibited the most stability in LAM
values, particularly during the middle time windows. High LAM values persisted even in the final
windows, suggesting that driving behavior remained controlled despite more variable traffic
conditions.

In contrast, Table 3 shows that RR values exhibited greater variability compared to DET and
LAM, fluctuating between 0.63 and 0.86. The highest RR values occurred in windows 5 and 13 (RR >
0.83), especially on the ACC X 0 channel, indicating a strong recurrence of system states.
Conversely, a significant decline in RR was observed during windows 16—19, most prominently on the
GYRO_Y_0 channel, which may reflect a decrease in driving regularity and an increase in behavioral
variability.
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(ACC_X, ACC_Y, ACC_Z, GYRO X, GYRO Y, GYRO %)

Table 1. DET values for each data channel

z > N N = Ny N T T 7 9l " <
£l5% 50| 8Y 59| 59| 83 80 87| 55| 59 54| &
§ o§ a8 A8 ag| ag a8 28| Y| /8 Ag| ag| ag
1 0.98 |0.892 | 0.932 | 0.947 | 0.959 | 0.963 | 0.987 | 0.892 | 0.932 | 0.947 | 0.959 | 0.963
2 0.98 |0.914 | 0.908 | 0.947 | 0.969 | 0.968 | 0.989 | 0.914 | 0.908 | 0.947 | 0.969 | 0.968
3 0.99 10.927 | 0.919 | 0.955 | 0.966 | 0.972 | 0.990 | 0.927 | 0.919 | 0.955 | 0.966 | 0.972
4 1098 10907 | 0.892 | 0.936 | 0.908 | 0.933 | 0.988 | 0.907 | 0.892 | 0.936 | 0.908 | 0.933
5 1099 10.950 | 0.948 | 0.946 | 0.932 | 0.931 | 0.994 | 0.950 | 0.948 | 0.946 | 0.932 | 0.931
6 1099 10.938 | 0.938 | 0.931 | 0.925 | 0.927 | 0.993 | 0.938 | 0.938 | 0.931 | 0.925 | 0.927
7 1099 10932 0942 | 0.928 | 0.915 | 0.925 | 0.992 | 0.932 | 0.942 | 0.928 | 0.915 | 0.925
8 10.99 10.936 | 0.941 | 0.931 | 0.930 | 0.924 | 0.992 | 0.936 | 0.941 | 0.931 | 0.930 | 0.924
9 1099 10.946 | 0.954 | 0.942 | 0.940 | 0.937 | 0.994 | 0.946 | 0.954 | 0.942 | 0.940 | 0.937
10 1 098 |0.904 | 0.951 | 0.928 | 0.958 | 0.939 | 0.989 | 0.904 | 0.951 | 0.928 | 0.958 | 0.939
11 {099 10.933 | 0.909 | 0.953 | 0.964 | 0.936 | 0.994 | 0.933 | 0.909 | 0.953 | 0.964 | 0.936
12 1099 10959 10943 | 0.974 | 0.975 | 0.969 | 0.995 | 0.959 | 0.943 | 0.974 | 0.975 | 0.969
13 1099 |0.982 | 0.965 | 0.978 | 0.961 | 0.951 | 0.995 | 0.982 | 0.965 | 0.978 | 0.961 | 0.951
14 {099 ]10.978 | 0.958 | 0.973 | 0.953 | 0.942 | 0.994 | 0.978 | 0.958 | 0.973 | 0.953 | 0.942
15 {099 ]0.964 | 0.940 | 0.964 | 0.934 | 0.920 | 0.993 | 0.964 | 0.940 | 0.964 | 0.934 | 0.920
16 1098 |0.958 | 0.930 | 0.956 | 0.888 | 0.889 | 0.987 | 0.958 | 0.930 | 0.956 | 0.888 | 0.889
17 1098 |0.969 | 0919 | 0.978 | 0.892 | 0.861 | 0.980 | 0.969 | 0.919 | 0.978 | 0.892 | 0.861
18 [ 0.98 |0.970 | 0.925 | 0.981 | 0.909 | 0.878 | 0.983 | 0.970 | 0.925 | 0.981 | 0.909 | 0.878
19 1098 10964 | 0962 | 0.977 | 0.892 | 0.867 | 0.983 | 0.964 | 0.962 | 0.977 | 0.892 | 0.867
Table 2. Presents the Laminarity (LAM) values for each data channel
(ACC X, ACC Y, ACC Z,GYRO X, GYRO_Y, GYRO 7)

2 cl cl cl e| e| ] !—4| v—<| y—<| _'| —| —|
|l =x| == =N| 2% =2 =8| =% =] =N =25 BT =
E| <] <o <u| <] €8] <u| <u| <u| <u| <] 22| <€
| =Q| 20| ~Q _‘ag _‘ag SO HAD AT =0 _‘ag »Jf qg
<« <« <« ) ) < < < < o ) O

11099 ]10.926 | 0.949 | 0.960 | 0.967 | 0.970 | 0.997 | 0.926 | 0.949 | 0.960 | 0.967 | 0.970
21099 10.940 | 0.933 | 0.959 [ 0.975 | 0.975 [ 0.997 | 0.940 | 0.933 | 0.959 | 0.975 | 0.975
31099 10.948 | 0.940 | 0.965 | 0.973 | 0.977 | 0.997 | 0.948 | 0.940 | 0.965 | 0.973 | 0.977
41099 [0.933 | 0.920 | 0.950 | 0.929 | 0.946 | 0.997 | 0.933 | 0.920 | 0.950 | 0.929 | 0.946
51099 10.963 | 0.961 | 0.960 | 0.950 | 0.946 | 0.998 | 0.963 | 0.961 | 0.960 | 0.950 | 0.946
61099 |0.954 | 0.952 | 0.948 | 0.945 | 0.944 | 0.998 | 0.954 | 0.952 | 0.948 | 0.945 | 0.944
71099 10.948 | 0.954 | 0.944 | 0.938 | 0.941 | 0.998 | 0.948 | 0.954 | 0.944 | 0.938 | 0.941
81099 10.951 | 0.953 | 0.945 | 0.949 | 0.941 | 0.998 | 0.951 | 0.953 | 0.945 | 0.949 | 0.941
91099 |]10.960 | 0.963 | 0.956 | 0.957 | 0.952 | 0.998 | 0.960 | 0.963 | 0.956 | 0.957 | 0.952
10 1 0.99 ]0.928 | 0.960 | 0.945 | 0.968 | 0.952 | 0.997 | 0.928 | 0.960 | 0.945 | 0.968 | 0.952
111099 10.951 [0.930 | 0.965 | 0.973 | 0.950 | 0.998 | 0.951 | 0.930 | 0.965 | 0.973 | 0.950
121099 10.970 | 0.955 | 0.980 | 0.981 | 0.975 | 0.998 | 0.970 | 0.955 | 0.980 | 0.981 | 0.975
131099 10987 | 0976 | 0.985 | 0.973 | 0.965 | 0.998 | 0.987 | 0.976 | 0.985 | 0.973 | 0.965
141099 10.984 | 0.972 | 0.981 | 0.968 | 0.959 | 0.998 | 0.984 | 0.972 | 0.981 | 0.968 | 0.959
151099 10.974 | 0.959 | 0.975 | 0.956 | 0.946 | 0.998 | 0.974 | 0.959 | 0.975 | 0.956 | 0.946
16 | 0.99 | 0.968 | 0.950 | 0.967 | 0.924 | 0.921 | 0.997 | 0.968 | 0.950 | 0.967 | 0.924 | 0.921
17 1099 10973 10939 | 0.981 | 0.924 | 0.895 | 0.995 | 0.973 | 0.939 | 0.981 | 0.924 | 0.895
18 1 099 10975 10943 | 0.984 | 0.934 | 0.907 | 0.996 | 0.975 | 0.943 | 0.984 | 0.934 | 0.907
191099 10969 | 0.968 | 0.980 | 0.922 | 0.898 | 0.996 | 0.969 | 0.968 | 0.980 | 0.922 | 0.898
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Table 3. Presents the Recurrence Rate (RR) values for each data channel
(ACC_X, ACC_Y, ACC_Z, GYRO X, GYRO Y, GYRO Z)

z S = N ;' :' N 9! 0 o ;' ;' <
SoeX| 2n| gV 2o g 2N 22X 27 2N 2| 2| 2o
E| 20| 2| 2o 22| 2| 2U| 2| 2| 2| 2| S| 28
TG YY) T B TE Tg g Tyl gl TE TE T

ol © o o ©
1071 [0.687 [ 0.752 [ 0.796 [ 0.791 | 0.83 | 0.719 | 0.687 [ 0.752 [ 0.79 | 0.791 | 0.831
21075 [0.728 [0.707 | 0.797 | 0.830 [ 0.85 | 0.751 | 0.728 | 0.707 | 0.79 | 0.830 | 0.851
31075 [0.744 [0.723 | 0.815 | 0.821 [ 0.86 | 0.757 [ 0.744 | 0.723 | 0.81 | 0.821 | 0.863
41073 [0.700 | 0.666 | 0.758 | 0.687 | 0.74 | 0.732 [ 0.700 | 0.666 | 0.75 | 0.687 | 0.748
5]0.83 [0.803 | 0.784 [ 0.788 [ 0.743 [ 0.74 | 0.830 | 0.803 | 0.784 | 0.78 | 0.743 | 0.744
61080 |0.774 [ 0.752 [ 0.748 [ 0.710 [ 0.74 | 0.803 | 0.774 | 0.752 [ 0.74_| 0.710 | 0.741
71079 0.760 [ 0.759 | 0.738 [ 0.659 | 0.73 | 0.797 [ 0.760 | 0.759 | 0.73 | 0.659 | 0.735
81 0.80 [0.771 | 0.762 [ 0.743 [ 0.674 | 0.73 [ 0.801 | 0.771 | 0.762 | 0.74 | 0.674 | 0.735
9 0.83 [0.803 [ 0.796 | 0.776 | 0.691 | 0.76 | 0.833 | 0.803 | 0.796 | 0.77 | 0.691 | 0.769
10 [ 0.76 | 0.688 [ 0.781 [ 0.748 [ 0.724 | 0.77 | 0.764 | 0.688 | 0.781 | 0.74 | 0.724 | 0.771
11]0.82 [0.747 [ 0.686 | 0.814 | 0.754 | 0.76 | 0.827 | 0.747 | 0.686 | 0.81 | 0.754 | 0.762
12]0.84 [0.818 [ 0.765 | 0.880 | 0.816 | 0.84 | 0.844 | 0.818 [ 0.765 | 0.88 | 0.816 | 0.847
13]0.81 [0.914 | 0.868 | 0.892 [ 0.808 [ 0.80 | 0.819 | 0.914 | 0.868 | 0.89 | 0.808 | 0.809
14 ] 0.78 | 0.897 | 0.846 | 0.870 [ 0.796 | 0.78 | 0.789 | 0.897 | 0.846 | 0.87 | 0.796 | 0.782
15]0.74 [ 0.859 | 0.800 | 0.842 [ 0.758 [ 0.73 | 0.746 | 0.859 | 0.800 | 0.84 | 0.758 | 0.738
16 [ 0.68 | 0.831 | 0.764 | 0.809 | 0.644 | 0.67 | 0.682 | 0.831 | 0.764 | 0.80 | 0.644 | 0.671
17 0.63 | 0.857 [ 0.731 | 0.879 | 0.644 | 0.62 | 0.636 | 0.857 | 0.731 | 0.87 | 0.644 | 0.622
18] 0.66 | 0.858 | 0.737 | 0.894 | 0.689 | 0.65 | 0.666 | 0.858 | 0.737 | 0.89 | 0.689 | 0.651
19 [0.68 [ 0.835 | 0.823 [ 0.880 [ 0.619 | 0.63 | 0.687 | 0.835 [ 0.823 [ 0.88 | 0.619 | 0.634

RP graphs were generated from accelerometer and gyroscope signals for each time window to
provide a visual representation of the system's dynamic behavior. These 2D plots illustrate how system
states recur or evolve by capturing similarities between signal sequences. Consequently, RPs offer an
intuitive view of the vehicle’s stability, variability, and rhythmic patterns, effectively complementing
the quantitative insights derived from RQA.

Variations in the lateral acceleration ACC_Y and roll motion GYRO X data are particularly
informative for driving behavior characterization. Events such as lane changes, obstacle avoidance
maneuvers, or lateral oscillations due to dense traffic leave distinct signatures in these data. Moreover,
accumulated driver fatigue may lead to diminished directional control, reflected in more erratic
patterns of lateral acceleration and vehicle tilt. When these signal variations are interpreted alongside
trends in DET, LAM, and RR values, a coherent behavioral profile emerges. Overall, driving
behaviour remained largely stable and predictable throughout the recording, with minor performance
degradations observed in the later stages. These deviations are likely attributable to external influences
(e.g., increased traffic complexity) or internal factors (e.g., driver fatigue).

4. CONCLUSIONS

This study demonstrated the effectiveness of RQA, combined with RPs generated using a
sliding time window (3000-sample epochs with 80% overlap), for evaluating driving behavior based
on accelerometer and gyroscope data. The RQA metrics, RR, DET, and LAM, provided detailed
insights into driving dynamics across 19 overlapping time windows. We should note that no
indications of aggressive driving behavior (class 1) were observed during the analyzed intervals. All
findings consistently reflected predominantly normal driving behavior (class 0), with only minor,
expected adaptations to external influences such as traffic congestion. The integrated use of RQA and
RPs analysis enabled sensitive, quantitative assessments of driving behavior and offered intuitive
visual confirmation of the results. These methods present a robust and scalable approach for
continuous driver monitoring and road safety evaluation.
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Future research may further strengthen this framework by incorporating predictive algorithms

for early signs of driver fatigue or risky behavior detection in real time.
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