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Abstract 

In this paper we present the analytical solution of a one-dimensional (1D) parabolic differential equation (PDE), 

encountered in many engineering studies under the name of the heat equation.  To solve the equation, we use the 

method of separation of variables together with Fourier series. After applying the separation of variables, the initial 

equation decomposes into two ordinary differential equations (ODE). The equations obtained correspond to the 

spatial (x) and temporal (t) components. The spatial solution, for the first equation, is expressed by sinusoidal 

functions corresponding to the eigenfunctions, and the temporal component, for the second equation, has a 

characteristic exponential dependence. The determination of the Fourier series coefficients is based on the initial 

condition. Thus, we constructed an exact solution in the form of convergent series. The method used in solving the 

equation, together with the boundary conditions and initial conditions, can be used as a reference for validating 

numerical methods or practical experiments performed in the laboratory. 

  

Keywords: parabolic differential equation, Fourier series.  

 

 

1. INTRODUCTION 

 
The parabolic, one-dimensional (1D) partial differential equations (PDEs) are used in the study 

of diffusion and transport phenomena. An example of a 1D parabolic equation is the heat equation [4]. 

To present the steps for solving this equation we consider the parabolic partial derivative equation: 

 

𝜕2𝑢

𝜕𝑥2
=

1

4.2 ∙  10−6

𝜕𝑢

𝜕𝑡
, 0 < 𝑥 < 1, 𝑡 > 0, 

(1) 

 

with boundary conditions: 

 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑡 > 0, (2) 

 

and the initial condition given by: 

 

𝑢(𝑥, 1) = (1 − 𝑥)𝑒−5𝑥, 0 ≤ 𝑥 ≤ 1. (3) 

 

Equation (1) can be considered to be similar to the homogeneous one-dimensional heat equation. 

From a physical point of view, it is considered a rectilinear bar, and we denote 𝑢(𝑥, 𝑡) the temperature 

at a point, located on the bar, arbitrarily chosen at time 𝑡. This equation has the form of equation (1-1) 
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from [2, page 144], an equation often encountered in the study of physical phenomena. The equation is 

used to model the temperature distribution in a solid bar along one direction.  

 

2. RESULTS AND DISCUSSION 

 

To find the general solution of equation (1)-(3) we will use the method of separation of variables. 

In this sense, we will look for particular solutions for equation (1) - (3) of the form [2,4]: 

 

𝑢(𝑥, 𝑡) = 𝑋(𝑥) ∙  𝑇(𝑡) (4) 

 

We derive equation (4) and substituting into equation (1) we obtain: 

 

𝑋′′(𝑥)𝑇(𝑡) =
1

4.2 ∙  10−6
𝑋(𝑥)𝑇′(𝑡) 

(5) 

 

Equivalent relationship with: 

 
𝑋′′(𝑥)

𝑋(𝑥)
=

1

4.2 ∙  10−6
∙

𝑇′(𝑡)

𝑇(𝑡)
= − 𝑘 

(6) 

 

We chose the minus sign in front of the positive constant 𝑘 [5] (𝑥, 𝑡 are independent) because 

we want to find solutions for 𝑋(𝑥) ≠  0. Also, we obtained relation (6) by excluding the solution 

𝑢(𝑥, 𝑡) ≡ 0. The equations are thus obtained: 

 

𝑋′′(𝑥) + 𝑘𝑋(𝑥) = 0 

𝑇′(𝑡) + 4.2 ∙ 10−6 ∙ 𝑘𝑇(𝑡) = 0 

𝑋(0) = 0, 𝑋(1) = 0 

(7) 

 

The general solution of the first equation in (2) is given by [1, 5]: 

 

𝑋(𝑥) = 𝑎 sin(𝑥√𝑘) + 𝑏 cos(𝑥√𝑘) (8) 

 

but, considering the boundary conditions [3], we obtain: 

 

𝑋(0) = 0 ⇒  𝑏 = 0 , 𝑋(1) = 0 ⇒  𝑎 sin(√𝑘) = 0 ⇒ √𝑘 = 𝑛𝜋 (9) 

 

To simplify the calculation we can consider the scalar 𝑎 = 1. Thus, we will obtain the solution: 

 

𝑋(𝑥) = sin(𝑛𝜋𝑥),   𝑛 = 1,2,3, . . . (10) 

 

For the function 𝑇(𝑡), we obtain: 

 

𝑇(𝑡) = 𝑒−4.2∙10−6(𝑛𝜋)2𝑡 (11) 

 

The general solution is given by [5]: 
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𝑢(𝑥, 𝑡) = ∑ 𝑏𝑛𝑒−4.2∙10−6(𝑛𝜋)2𝑡

∞

𝑛=1

sin(𝑛𝜋𝑥) 
(12) 

 

where the Fourier coefficient, 𝑏𝑛, is determined by [5]: 

 

𝑢(𝑥, 0) = (1 − 𝑥)𝑒−5𝑥 = ∑ 𝑏𝑛

∞

𝑛=1

sin(𝑛𝜋𝑥) 
(12) 

 

The calculation steps for 𝑏𝑛 are detailed below. Thus, using [4], we can write: 

 

𝑏𝑛 = 2 ∫ (1 − 𝑥)𝑒−5𝑥 sin(𝑛𝜋𝑥)𝑑𝑥
1

0

 

𝑏𝑛 = 2 (∫ 𝑒−5𝑥 sin(𝑛𝜋𝑥)𝑑𝑥 − ∫ 𝑥𝑒−5𝑥 sin(𝑛𝜋𝑥)𝑑𝑥
1

0

1

0

) 

(13) 

 

Denoting the two integrals with 𝐼1 and 𝐼2 respectively, we can write the expression: 

 

𝑏𝑛 = 2(𝐼1 − 𝐼2) (14) 

 

To calculate the first integral we use [4] and obtain: 

 

𝐼1 = ∫ 𝑒−5𝑥 sin(𝑛𝜋𝑥)𝑑𝑥 =
𝑒−5𝑥

25 + (𝑛𝜋)2
(−5 sin(𝑛𝜋𝑥) − 𝑛𝜋 cos(𝑛𝜋𝑥))|

0

11

0

 

 

𝐼1 =
𝑛𝜋[1 + (−1)𝑛+1𝑒−5]

25 + (𝑛𝜋)2
 

(15) 

 

To calculate the second integral, we use integration by parts and obtain: 

 

𝐼2 = ∫ 𝑥𝑒−5𝑥 sin(𝑛𝜋𝑥)𝑑𝑥
1

0

=
𝑛𝜋[10 + (−1)𝑛+1𝑒−5((𝑛𝜋)2 + 35)]

(25 + (𝑛𝜋)2)2
 

(16) 

 
Substituting expressions (15) and (16) into formula (14), we obtain the expression: 

 

𝑏𝑛 =
2𝑛𝜋[(𝑛𝜋)2 + 15 − 10(−1)𝑛+1𝑒−5]

(25 + (𝑛𝜋)2)2
 

(17) 

 

In Fig. 1 we find the graphical representation of the solution of equation (1)-(3) for 20 spatial 

values, 𝑡 = 200 and the first three terms of the Fourier series. 
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Fig. 1. Graphical representation for 𝑢(𝑥, 𝑡) versus 𝑥 and 𝑡 [6] 
 

3. CONCLUSIONS 

 

The numerical study presented for solving one-dimensional parabolic partial differential 

equations using the separation of variables and Fourier series method allowed for an in-depth detailing 

of how the initial temperature distributions evolve over time. Each eigenfunction contributes separately 

to the general solution, and its evolution is given by an exponential dependence. This aspect highlights 

how diffusion or transfer processes diminish over time. The analytical solution method provides exact 

solutions that can be used in the interpretation of physical phenomena, as well as for the validation of 

numerical methods. 
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