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Abstract

In this paper we present the analytical solution of a one-dimensional (1D) parabolic differential equation (PDE),
encountered in many engineering studies under the name of the heat equation. To solve the equation, we use the
method of separation of variables together with Fourier series. After applying the separation of variables, the initial
equation decomposes into two ordinary differential equations (ODE). The equations obtained correspond to the
spatial (x) and temporal (t) components. The spatial solution, for the first equation, is expressed by sinusoidal
functions corresponding to the eigenfunctions, and the temporal component, for the second equation, has a
characteristic exponential dependence. The determination of the Fourier series coefficients is based on the initial
condition. Thus, we constructed an exact solution in the form of convergent series. The method used in solving the
equation, together with the boundary conditions and initial conditions, can be used as a reference for validating
numerical methods or practical experiments performed in the laboratory.
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1. INTRODUCTION

The parabolic, one-dimensional (1D) partial differential equations (PDEs) are used in the study
of diffusion and transport phenomena. An example of a 1D parabolic equation is the heat equation [4].
To present the steps for solving this equation we consider the parabolic partial derivative equation:

u___1 o ey <10 D
ox2  42-1069t S ’

with boundary conditions:

u(0,)=0, u(L,t)=0, t>0, 2)

and the initial condition given by:

u(x,1)=(1—-x)e™>*0<x < 1. 3)

Equation (1) can be considered to be similar to the homogeneous one-dimensional heat equation.
From a physical point of view, it is considered a rectilinear bar, and we denote u(x, t) the temperature
at a point, located on the bar, arbitrarily chosen at time t. This equation has the form of equation (1-1)
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from [2, page 144], an equation often encountered in the study of physical phenomena. The equation is
used to model the temperature distribution in a solid bar along one direction.

2. RESULTS AND DISCUSSION

To find the general solution of equation (1)-(3) we will use the method of separation of variables.
In this sense, we will look for particular solutions for equation (1) - (3) of the form [2,4]:

u(x,t) =X(x)- T(t) 4)

We derive equation (4) and substituting into equation (1) we obtain:

)

X"(x)T(t) = X(x)T'(t)

42-10°°

Equivalent relationship with:

X'(x) 1 T'®
X(x)  42-10°¢ T(t)

e ©)

We chose the minus sign in front of the positive constant k [5] (x, t are independent) because
we want to find solutions for X(x) # 0. Also, we obtained relation (6) by excluding the solution
u(x,t) = 0. The equations are thus obtained:

X'"(x)+kX(x)=0
T'(t) + 4.2-1076 - kT(t) = 0 (7)
X(0)=0,X(1)=0

The general solution of the first equation in (2) is given by [1, 5]:

X(x) = asin(xVk) + b cos(xVk) (®)

but, considering the boundary conditions [3], we obtain:

X(0)=0=b=0,X1)=0 = asin(Vk) =0 >vk =nn ©)

To simplify the calculation we can consider the scalar a = 1. Thus, we will obtain the solution:

X(x) = sin(nnx), n=1,23,... (10)

For the function T (t), we obtain:

T(t) = e—42:107%(nm)?%t (11)

The general solution is given by [5]:
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S onm)? (12)
u(x, t) = z bpe 42107 (Mt gin(nmx)
n=1
where the Fourier coefficient, b,,, is determined by [5]:
= 12)
u(x,0) = (1 —x)e™>* = Z b,, sin(nmx)
n=1
The calculation steps for b, are detailed below. Thus, using [4], we can write:
1
b, = 2.[ (1 — x)e>* sin(nmx)dx
0
) . (13)
b, =2 <j e >*sin(nmx)dx — f xe > sin(nnx)dx>
0 0
Denoting the two integrals with I; and I, respectively, we can write the expression:
b, =2(; — I3) (14)
To calculate the first integral we use [4] and obtain:
1 —5x 1
L = J;) e >*sin(nmx)dx = m(—S sin(nmx) — nm cos(nmx)) i
(15)
L= [l + (—=1)*1le™]
re 25 + (nm)?
To calculate the second integral, we use integration by parts and obtain:
R nm[10 + (=1)"*1e~>((nm)? + 35)] (16)
I, = Jo xe>* sin(nmx)dx = 25 1 (m)2)?
Substituting expressions (15) and (16) into formula (14), we obtain the expression:
_ 2nx[(nm)? + 15 — 10(=1)"+'e 5] (17)

bn (25 + (nm)?)2

In Fig. 1 we find the graphical representation of the solution of equation (1)-(3) for 20 spatial
values, t = 200 and the first three terms of the Fourier series.
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Fig. 1. Graphical representation for u(x,t) versus x and t [6]

3. CONCLUSIONS

The numerical study presented for solving one-dimensional parabolic partial differential
equations using the separation of variables and Fourier series method allowed for an in-depth detailing
of how the initial temperature distributions evolve over time. Each eigenfunction contributes separately
to the general solution, and its evolution is given by an exponential dependence. This aspect highlights
how diffusion or transfer processes diminish over time. The analytical solution method provides exact
solutions that can be used in the interpretation of physical phenomena, as well as for the validation of
numerical methods.
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