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Abstract 
We investigate the following question: 

Given a number field K with s real embeddings and 2t complex ones has a group of units U ⊂ 𝒪K such that all 

elements in U have all its complex conjugates of same absolute value, does it follow that t = 1? 

This fact has an interesting implication in complex hermitian geometry, namely it describes all Oeljeklaus–Toma 

manifolds carrying locally conformally Kähler structures. We prove that the stated question has an affirmative 

answer under a (relatively mild) condition on K, namely that for some finitely may extensions L of it, L has finitely 

many units lying on some specific circle. 
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1. INTRODUCTION  

 
In view of Kronecker’s unit theorem, it is a natural question to look at algebraic units whose 

complex Galois conjugates have equal absolute value. This leads to the following question:  

 

Give examples of number fields 𝑘 of signature (𝑠, 𝑡) (with 𝑠, 𝑡 > 0) having subgroups 𝑈 as 

above of (maximal) rank 𝑠.  

 

The question arose from a problem in complex geometry, namely: such number fields would 

have given examples of compact complex manifolds (the so called "OT manifolds"), with interesting 

geometric structures, namely "l.c.K. metrics" (see Section 2.2 for the precise definitions). 

Some geometrical facts hinted that such examples of number fields must necessarily have 𝑡 =
1, but the proof of this came along a series of papers. First it was proven in [8]  that one must have 𝑡 ≤
𝑠; next, this result was widely extended in [3] where it was shown that the signature of any number field 

containing a unit whose complex conjugates are of same absolute value must obey a relation of the form 

𝑠 = (2𝑡 +  2𝑚)𝑞 − 2𝑡, for some integers 𝑚 ≥ 0 and 𝑞 ≥ 2. This left some cases (𝑠, 𝑡) still open. 

Eventually, the remaining cases were settled in [1], hence proving that any field 𝑘 as in the above 

question must indeed have 𝑡 = 1. 

 
2. PRELIMINARIES 

 

2.1 NUMBER THEORY 

 
Through this paper, 𝑘 denotes a number field, that is, a finite field extension of ℚ. Fix an 

algebraic closure 𝑘. The primitive element theorem says that 𝑘 = ℚ(𝜃), for some 𝜃 ∈ 𝑘, and let 𝑓 ∈
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ℚ[𝑋] ⊂ 𝑘[𝑋]  be the minimal polynomial of 𝜃. Let ℚ = ℚℂ be the algebraic closure of ℚ in ℂ. Write 

𝑓 = ∏ (𝑋 − 𝜃𝑖)𝑛
{𝑖=1} , where 𝜃1 = 𝜃, … , 𝜃𝑛 ∈ 𝑘 and 𝑛 = [𝑘 ∶  ℚ]. According to Steinitz theorem, there is 

a ℚ - isomorphism of fields 𝛼 ∶  𝑘 → ℚ and let 𝑎𝑖 = 𝛼(𝜃𝑖), for any 𝑖 = 1, 𝑛. For each such 𝑖, we have 

the field embedding 𝜎i: 𝑘 →  ℚ ⊂ ℂ given by 𝜃 ↦ 𝑎𝑖. The number of these embeddings is precisely 𝑛 

(as char(𝑘) = 0). Moreover, these embeddings do not depend on the chosen primitive element, since if 

we pick another primitive element, say 𝜃′, its minimal polynomial would be 𝑓 because of the 

automorphism of 𝑘 given by 𝜃 ↦ 𝜃′. Also, any embedding 𝑘 ↪ ℂ must be one of the 𝜎𝑖 's because it 

must send 𝜃 into a root of 𝑓 ∈ ℚ[𝑌] ⊂ ℚ[𝑌]. 
We rearrange these embeddings so that 𝜎1, … , 𝜎𝑠 are all of them whose images are contained in 

ℝ, for some 𝑠 ≥ 0 (so these are the ones given by the real roots of 𝑓 ∈ ℚ[𝑌]). As any complex root of 

𝑓 comes in pair with its conjugate, we may present the remaining embeddings as 

𝜎{𝑠+1}, 𝜎{𝑠+1}, … , 𝜎{𝑠+𝑡}, 𝜎{𝑠+𝑡}, for some t ≥ 0. In general, by the normal closure of 𝑘 is meant the 

intermediate extension 𝑘 ⊂ ℚ(𝜃1, … , 𝜃𝑛): = 𝑘𝑛𝑜𝑟 ⊂ 𝑘. Clearly, ℚ ⊂  𝑘nor is Galois (and hence 𝑘 ⊂
 𝑘nor is so). 

  
Definition 2.1.1. Let 𝜎1, … , 𝜎𝑠 be the real embeddings of 𝑘 and 𝜎𝑠+1, 𝜎𝑠+1  ∶= 𝜎𝑠+𝑡+1, … , 𝜎𝑠+𝑡, 𝜎𝑠+𝑡: =
𝜎𝑠+2𝑡 be its complex embeddings. The signature of 𝑘 is defined to be (𝑠, 𝑡), denoted sgn(𝑘). The group 

morphism ℓ: (𝑘∗,⋅) →  (ℝ𝑠+𝑡 , +) 

 

ℓ(𝛼) = (log|𝜎1(𝛼)| , … , log|𝜎𝑠(𝛼)| , 2 log|𝜎𝑠+1(𝛼)|, … , 2 log |𝜎𝑠+𝑡(𝛼)|), 
 

is called the logarithmic embedding of 𝑘.  

 

Definition 2.1.2. The ring of integers of 𝑘 is 𝒪𝑘 = { 𝛼 ∈ 𝑘; there is 𝑓 ∈ ℤ[𝑋] monic with 𝑓(α) = 0}, 

and the associated group of invertible elements, 𝒪𝑘
∗ , is called the group of units of 𝑘. By 𝒪𝑘

∗,+
 is denoted 

the subgroup of 𝒪𝑘
∗  of totally positive units, i.e. elements 𝛼 ∈ 𝒪𝑘

∗ for which 𝜎𝑖(𝛼) > 0 for all 𝑖 = 𝑖, 𝑠, 

where (𝑠, 𝑡) = sgn(𝑘). 

As shown by Dirichlet, the image of 𝒪𝑘
∗  through ℓ is a full lattice inside a hyperplane of ℝ𝑠+𝑡, in 

particular getting: 

 

Theorem 2.1.3. [see e.g. [5], Chapter 5, Theorem 38] In the ring 𝒪𝑘, there are units ε1, … , ε𝑟, where 

r = s + t − 1 and (𝑠, 𝑡) = sgn(𝑘), such that any unit ε ∈  𝒪𝑘
∗ can be uniquely written as 

 

𝜀 = 𝜁𝜀1
𝑎1 … 𝜀𝑟

𝑎𝑟 

with 𝑎𝑖 ∈ ℤ and 𝜁 ∈ 𝒪𝑘
∗  a root of unity. 

 

Theorem 2.1.4 [see e.g. [5], Appendix 2, Theorem 1] For an extension of number fields 𝐾/𝑘, any 

embedding of 𝑘 extends to exactly [K: k] embeddings of 𝐾. 

 

Definition 2.1.5. A subgroup 𝑈 of 𝒪𝑘
∗,+

 is called admissible if rkℤ(𝑈) = s and 𝜋(ℓ(𝑈)) is a full lattice 

in ℝ𝑠, where 𝜋 denotes the projection ℝs+t → ℝs. 

 

Remark 2.1.6. The following remarks will be useful in the following parts: 

• the subgroup of totally positive units, 𝒪𝑘
∗,+

 is of finite index in 𝒪𝑘
∗  (as the square of a unit has 

positive real images); 

• for any number 𝑘 field with 𝑠, 𝑡 ≥ 1 there exist admissible subgroups [6]. 

 

Definition 2.1.7. Let 𝑅 ∈ ℚ, 𝑅 > 0, be an algebraic integer and let 𝑘 be identified with the image of a 

complex embedding of it. We say that 𝑘 is 𝑅-finite if |𝒪𝐾
∗ ∩ 𝒞(0, 𝑅)| < ∞, where 𝐾 = 𝑘𝑛𝑜𝑟(𝑅) and 

𝒞(0, 𝑅) is the circle centered in the origin and having radius 𝑅.  
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Remark 2.1.8. If 𝑅 is also a unit, we have a natural structure of abelian group on 𝒪𝑘
∗ ∩ 𝒞(0, 𝑅), for any 

number field 𝑘 containing R, given by  

𝛼 ∗ 𝛽 ≔
𝛼𝛽

𝑅
, 

for any 𝛼, 𝛽 ∈ 𝒪𝑘
∗ ∩ 𝒞(0, 𝑅). Plainly, ∗ is associative and commutative. The identity element is 𝑅 and 

the inverse of 𝛼 is 𝛼. 

 
2.2 OELJEKLAUS – TOMA MANIFOLDS 

 
These manifolds were introduced by K.Oeljeklaus and M. Toma in [6] as a generalization to 

higher dimensions of the Inoue surfaces 𝑆𝑀 in [4]. Very briefly, their construction goes as follows. Begin 

with a number field 𝐾 of signature (𝑠, 𝑡) > 0 (cf. Section 2.1 for what follows). Letting ℍ: =
{z ∈ ℂ; ℐm(z) > 0}, we see there are natural actions of (𝒪𝑘 , +) and respectively of 𝒪𝑘

∗,+
 on ℍ𝑠 × ℂ𝑡 ⊂

ℂ𝑠+𝑡 by 

𝑎 ⋅ (𝑧1, … , 𝑧𝑠+𝑡) ↦  (𝑧1 + 𝜎1(𝑎), … , 𝑧𝑠+𝑡 + 𝜎𝑠+𝑡(𝑎)) 

 

and respectively 

𝑢 ⋅ (𝑧1, … , 𝑧𝑠+𝑡) ↦  (𝜎1(𝑢)𝑧1, … , 𝜎𝑠+𝑡(𝑢)𝑧𝑠+𝑡). 
 

The combined resulting action of 𝒪𝐾
∗,+  ⋉ 𝒪𝐾 is however not discrete in general. Still, in [6] it is shown 

that one can always find admissible subgroups 𝑈 ⊂ 𝒪𝐾
∗,+

  such that the action of 𝑈 ⋉ 𝒪𝐾 is discrete and 

cocompact: the resulting compact complex manifold is denoted 𝑋(𝒪𝐾 , 𝑈) and is called an Olejeklaus-

Toma manifold (OT, for short).  

As these manifolds do not admit Kähler metrics (cf. [6], Prop. 2.5) it is natural to ask whether other 

natural metrics (do) exist on them. One of the most interesting candidates are the locally conformally 

Kähler metrics (l.c.K, for short): these are those Hermitian metrics whose associated (1,1) − forms 𝜔 

have the property 

𝑑𝜔 = 𝜃 ∧ 𝜔                                                            (1) 

 

for some closed 1 −form 𝜃 (for more details see [2] or [7] for a more detailed account). The existence 

of such metrics on OT manifolds 𝑋(𝐾, 𝑈) can be read off the Galois properties of the group of units 𝑈. 

More precisely, it was shown that:  

 

Proposition 2.2.1. (cf [3], Appendix by L. Battisti) An Oeljeklaus-Toma manifold 𝑋(𝐾, 𝑈) admits an 

l.c.K. metric if and only if for any unit 𝑢 ∈  𝑈 one has  

 
| 𝜎𝑠+1(𝑢)| = ⋯ = | 𝜎𝑠+𝑡(𝑢)|                                                (2) 

 

Recall also the following 

 
Definition 2.2.2. (cf [6], Def. 1.5) An Oeljeklaus-Toma manifold 𝑋(𝐾, 𝑈) is called of simple type if 

there is no proper subfield 𝐿 ⊂ 𝐾 such that 𝑈 ⊂ 𝐿. 
 

Definition 2.2.3. For a given Oeljeklaus-Toma manifold 𝑋(𝐾, 𝑈), a unit 𝑢 ∈ 𝑈 will be called 

homothetical (resp. isometrical) if  

 
| 𝜎𝑠+1(𝑢)| = ⋯ = | 𝜎𝑠+𝑡(𝑢)| > 1 (resp. | 𝜎𝑠+1(𝑢)| = ⋯ = | 𝜎𝑠+𝑡(𝑢)| = 1). 

 

Notice that since 𝑋(𝐾, 𝑈) is non- Kähler, at least one of the units must be homothetical.   
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3. THE MAIN RESULTS  

 
3.1. DISTINGUISHED GROUPS OF UNITS IN NUMBER FIELDS ASSOCIATED TO 

LCK MANIFOLDS 

 
First we give a new, simpler proof of the result in [8]: 

 

Proposition 3.1. Let 𝑋(𝐾, 𝑈)  be an OT manifold. If 𝑠 < 𝑡 and 𝑋(𝐾, 𝑈) is of simple type, then all units 

in 𝐾 must be isometrical, getting in this way a contradiction with the existence of l.c.K. metrics on  

𝑋(𝐾, 𝑈). 

 

Proof. Since 𝜎𝑠+1(𝑢)𝜎𝑠+1(𝑢) = ⋯ = 𝜎𝑠+𝑡(𝑢)𝜎𝑠+1(𝑢) = 𝑅2, if we take any  σ ∈ 𝐺𝑎𝑙(ℚ/ ℚ), we get  

 

𝜎(𝑧1)𝜎(𝑧1) = ⋯ = 𝜎(𝑧𝑡)𝜎(𝑧𝑡) = 𝜎(𝑅2)  

 

where 𝑧𝑖 ≔ 𝜎𝑠+𝑖(𝑢), for any 𝑖 = 1, 𝑡. As 𝑠 < 𝑡, there must be at least one product of the form 𝑧𝑖𝑧𝑗 in 

the above equations, according to the box principle. We notice that not all of these products have just 

one real conjugate 𝜎(𝑧𝑖), for otherwise, by taking absolute values, we get 𝑟𝑖𝑅 = 𝑟𝑗𝑅 for at least two 

indices 𝑖, 𝑗, where 𝑟𝑖 ≔ 𝜎𝑖(𝑢), for 𝑖 = 1, 𝑠, contradicting degℚ(𝑢) = [𝐾: ℚ]. Thus, we must have 𝑟𝑖𝑟𝑗 =

𝜎(𝑧𝑖)𝜎(𝑧𝑖). But then  

 

𝜎(𝑅2) = 𝜎(𝑧𝑖)𝜎(𝑧𝑖) = 𝑟𝑖𝑟𝑗 = |𝑟𝑖𝑟𝑗| = | 𝜎(𝑧𝑖)𝜎(𝑧𝑖)| = 𝑅2. 

 

As 𝜎 was arbitrary, we conclude that 𝑅2 ∈ ℚ, and since 𝑅 is a positive algebraic unit, we must have 

𝑅 = 1. 

 

Theorem 3.2. Let 𝐾 be a number field having signature (𝑠, 𝑡), with 𝑠 ≥  1 and 𝑡 ≥ 1. Assume that 𝑈 is 

a rank 𝑠 subgroup of 𝒪𝐾
∗  such that for each 𝑢 ∈ 𝑈 one has  |𝜎𝑠+1(𝑢)| = |𝜎𝑠+𝑗(𝑢)| = 𝑅𝑢, for all 𝑖, 𝑗. If 

there is a ℤ - basis {𝑢1, … , 𝑢𝑠} of 𝑈 such that 𝐾 is 𝑅𝑢𝑖
-finite for all 𝑖, then 𝑡 = 1. In particular, it follows 

that there is no OT manifold 𝑋(𝐾, 𝑈)  of simple type carrying an l.c.K. metric. 

 

Proof. Assume 𝑡 > 1. Consider 

 

𝐺𝑈: = {𝑢 ∈  𝑈|𝜎𝑠+1(𝑢) = ⋯  = 𝜎𝑠+𝑡(𝑢)}. 
 

We show that 𝐺𝑈 ⊂  𝑈 is of finite index. For this, it suffices to show that 𝑢𝑖
𝑛 ∈ 𝐺𝑈, for any 𝑖. According 

to the hypothesis and Remark 2.1.8, 𝒪𝐿𝑖

∗ ∩ 𝒞(0, 𝑅𝑢𝑖
) is a finite abelian group, where 𝐿𝑖 = 𝐾𝑛𝑜𝑟(𝑅𝑢𝑖

), 

so there is 𝑛 ∈ ℕ such that 𝛼∗𝑛 = 𝑅𝑢𝑖
 for all 𝛼 ∈ 𝒪𝐿𝑖

∗ . From the definition of the group law ∗ it follows 

immediately that 𝛼𝑛 = 𝑅𝑛. But the hypothesis on 𝑈 says that 𝜎𝑠+𝑗(𝑢𝑖) ∈ 𝒪𝐿𝑖

∗ ∩ 𝒞(0, 𝑅) for any 𝑗 = 1, 𝑡. 

Therefore 𝑢𝑖
𝑛 ∈ 𝐺𝑈.  

In particular, 𝑟𝑘ℤ(𝐺𝑈) = 𝑠. Consider the field 𝑘: = {𝑥 ∈  𝐾|𝜎𝑠+1(𝑥) = ⋯ = 𝜎𝑠+𝑡(𝑥)} and 

denote by (𝑠′, 𝑡′) its signature. As at least 𝑡 embeddings of 𝐾 lie above a single embedding of 𝑘, we see 

that, according to Theorem 2.1.4, 

 
[𝐾: 𝑘] ≥  𝑡                                                               (3) 

 

As all the complex embeddings of 𝐾 lie above a single embedding 𝜏 of 𝑘, and hence all real embbedings 

of 𝑘 distinct from 𝜏 lift to real embeddings of 𝐾, we must have 

𝑡′ ∈  {0, 1}                                                                (4) 

and also 
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𝑠′ − 1 ≤
𝑠

[𝐾:𝑘]
≤

𝑠

𝑡
                                                           (5)  

 
(also by Theorem 2.1.4). More, from 𝐺𝑈 ⊂ 𝒪𝐾

∗  and Dirichlet's unit theorem (Theorem 2.1.3) we get 

𝑠′ + 𝑡′ − 1 ≥  𝑠. 

Now, if 𝑡′ = 1, from (3) we get 𝑠′ + 2𝑡′ ≤
𝑠

𝑡
+ 2, that is, 𝑠′ ≤

𝑠

𝑡
; but (5) implies 𝑠′ ≥  𝑠 hence we get 

𝑠 ≤
𝑠

𝑡
 which forces 𝑡 = 1 since 𝑠 ≥  1. If 𝑡′ = 0, from (5) we get 𝑠′ − 1 ≥  𝑠, so from (4) we get 

𝑠

𝑡
≥  𝑠 

which forces again 𝑡 = 1. 
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