ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
MATHEMATICS, PHYSICS, THEORETICAL MECHANICS
FASCICLE II, YEAR XVII (XLVIII) 2025, No. 2
DOI: https://doi.org/10.35219/ann-ugal-math-phys-mec.2025.2.08

Algorithmic paradigms in Big Data

Corina Dima'”*

! Dunarea de Jos” University of Galati, Faculty of Sciences and Environment, Department of Mathematics and
Computer Science, 47 Domneasca St., RO-800008, Galati, Romania

*Corresponding author: cbocaneala@ugal.ro

Abstract

The gigantic increase in the volume of data that needs to be stored, transmitted and processed in recent years has
led to the emergence of a new category of algorithms designed specifically for what is called Big Data. Today's
information is too large, too diverse and requires real-time transmission to be manipulated by classical techniques.
This has led to a complete rethinking of algorithmic paradigms. In this paper we present the MapReduce
paradigms, streaming algorithms, approximate structures, algorithms for large graphs, dimensionality reduction,
distributed machine learning. For a better understanding we have added comparisons, intuitive explanations,
mathematical formulas and pseudocode.

Keywords: Big Data, algorithms, data storage, data processing

1. INTRODUCTION

Big Data concept represents not just a huge increase in the amount of information, but also
involves a lot of new challenges that classic algorithms cannot cope with. Typically, the storage capacity
of memory is exceeded by the amount of data, the speed of streams exceeds the real-time processing
capacity of the servers, and the different types of data (text, images, sounds, videos, sensors, graphics)
require a model that can be generalized. Current systems generate over hundreds of exabytes of data
every day (Berloco et al. [1]). We can no longer consider sorting the data and storing all the information
in memory. The reality of Big Data means: data that is created continuously in huge volume, in different
formats and with quite high uncertainty.

At this point, algorithms can no longer assume: that the data can be entirely sorted, that all the
data could stay in one place, that the entire process could be executed on a single device, that multiple
types of testing are available, or that every step is correct. In Big Data: approximation is the rule,
distribution is a necessity, streaming is inevitable, error is part of the system.

The analysis in [2] reveals that a Big Data algorithms must further optimize: communication
cost, memory consumption per node (user), fault tolerance, latency and throughput.

Recently, the specialized literature has also described the transformation of Big Data into a
complex socio-technical ecosystem, with software infrastructures, global networks and heterogeneous
data sources interacting in emergent ways, in addition to the larger volume and velocity of data. Based
on the analysis carried out by Zhang et al. [3], Big Data is no longer just a technical construct and
therefore becomes a complex set of concepts in which data quality, provenance and access policy are as
vital as the algorithms operating on them. They state that, in a large part of scientific spheres — including
climatology, healthcare and urban analysis — the relationships between datasets are as important, if not
more important, than the datasets themselves. this can lead to semantic integration methods and FAIR
(Findable, Accessible, Interoperable and Reusable) infrastructure.

103

https://doi.org/10.35219/ann-ugal-math-phys-mec.2025.2.08

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

Moreover, from planetary data, especially those on a temporal scale, it becomes evident that a
world of Big Data is emerging, with distributed computing, edge computing, distributed learning and
multi-cloud being the cornerstones of research and industry. Romero and Patel [4] note the importance
of distributed predictive models in the fields of environmental science, renewable energy and natural
resource management, where decisions are needed in extremely short time frames. In parallel, [5]
emphasize the importance of unstructured data streams — such as satellite images, loT signals and free
text — in general, along with the need for algorithms capable of handling such data flexibly and in real
time. Together, they prove that Big Data has become a truly multidisciplinary field in continuous
conceptual and technological expansion.

2. BIG DATA ALGORITHM REQUIREMENTS

According to Abdalla [2], Big Data algorithms must meet the following requirements:
scalability, low latency, failure tolerance, communication minimization, energy efficiency, distributed
processing.

2.1. Scalability
In Big Data, the amount of data is huge (on the order of petabytes), and the algorithm must use
thousands of nodes (users), without them confusing each other, as highlighted by Berloco et al. [1].
Scaling is never perfectly linear because users (nodes):
- queue for shared resources (network, disk), a phenomenon documented in studies on
MapReduce performance [12],
- have to communicate with each other (communication), a process much more expensive
than the computation itself, as shown by Cormode [7],
- sometimes get stuck (faults), which requires fault-tolerance mechanisms analyzed in detail
by Hedayati et al. [6],
- need coordination (synchronization), an aspect identified as a major source of overhead in
distributed systems [2, 12].
Thus, the real scalability is always below ideal, a phenomenon constantly observed in the
analysis of Hadoop and Spark clusters [2, 6, 12].

2.2. Latency

Streaming is the ability to process data in real time, with extremely low latency, so that the
system reacts immediately to events in the stream [9]. In modern platforms, such as Apache Flink, the
response time can reach about 20 ms in [oT applications, according to the analysis of Dritsas et al. [11].

Latency is the interval between the occurrence of an event and the reaction of the distributed
system. In sensitive scenarios, such as financial anomaly detection, even a 3-second delay can allow a
fraudulent transaction to be completed — practically too late for intervention [2, 11].

Concrete examples from critical applications show the importance of low latency [9, 11]:

- fraud detection — requires reactions in milliseconds,

- IoT analytics (e.g. gas, smoke sensors) — must respond instantly,

- algorithmic trading — operates in microseconds, where delay directly affects profit,

- network traffic monitoring — requires fast reaction to avoid blockages or attacks.

Thus, streaming algorithms are designed not for absolute accuracy, but for maximizing speed,
achieving a controlled compromise between precision and response time, a compromise extensively
documented in the literature [7, 9, 11].

2.3. Failure tolerance

Fault tolerance mechanisms are essential components of Big Data, as these systems operate at
large scales and are continuously exposed to hardware and software failures. Within the Hadoop
ecosystem, failed tasks are automatically re-executed — a strategy reviewed in detail by Hedayati et al.
[6]. Similarly, Apache Spark provides robustness through its dataline-based reconstruction of resilient

104

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

distributed datasets (RDDs), allowing data recovery in the event of failures, as documented by Dritsas
etal. [11].

Unlike traditional computing systems, where a single failure can halt the entire workflow, Big
Data platforms run on clusters spanning thousands of nodes, making hardware failures and software
anomalies not only possible but statistically inevitable [2, 12]. In such environments, memory corruption
can occur, individual processes can hang, network connections are prone to instability, and disk failures
can occur at any time. In classical systems designs, these incidents would constitute single points of
failure that would lead to complete system outages. In contrast, Big Data systems make such failures an
inherent aspect of large-scale distributed computing and are therefore designed to be resilient rather than
functional [2, 11, 12].

This design philosophy requires that conventional hardware — typically used to build Big Data
clusters — is cheap and more prone to failure; the large size of clusters increases the cumulative
probability of failures; systems must maintain 24/7 availability; and distributed jobs can run for hours
or even days, making complete restarts impractical. As a result, Big Data platforms incorporate
mechanisms that allow the system to efficiently “self-heal”, automatically reassigning failed tasks,
rebuilding corrupted data partitions, and rerouting workloads through healthy nodes without human
intervention [6, 11, 12].

2.4. Communication minimization

In distributed Big Data systems, communication between nodes is approximately 100—1000
times more expensive than local computation, due to network latency, congestion, and bandwidth
limitations. This fundamental observation explains why approximate structures such as sketches,
HyperLoglog, Bloom Filters have become indispensable tools in modern architectures for processing
streams and very large datasets [7, 9, 11]. Such structures allow the generation of compact and
probabilistic summaries, significantly reducing the communication requirement.

In distributed environments, communication costs frequently exceed the costs of arithmetic or
logical operations performed locally on each node. In many scenarios, it is much more efficient to
recompute a result locally than to transmit it over the network — a phenomenon confirmed in
performance analyses for MapReduce and Spark [2, 12]. The difference becomes obvious when we
compare, for example, the transmission of a 10 GB block of data, which can take several seconds even
on high-speed networks, with the local recomputing of a simple aggregation (such as a sum or average),
which requires only a few milliseconds.

This discrepancy of magnitude has led to the formulation of a central principle in the design of
Big Data algorithms: “Compute locally, communicate globally only when absolutely necessary.” This
principle underlies most contemporary distributed algorithms, as it minimizes network traffic, reduces
system latency, and improves the scalability of large-scale processing infrastructures [7, 2, 12].

2.5.E efficiency

Energy efficiency is a crucial element in Big Data systems, as modern clusters often include
thousands of nodes, and their continuous operation requires considerable energy consumption [2]. One
of the main factors of this consumption is the communication between nodes, which is 100—1000 times
more expensive than local computation in terms of both time and energy. In this context, approximate
techniques such as Count-Min Sketch, Bloom Filters and HyperLogLog significantly contribute to
reducing energy consumption, as they limit the amount of data transferred over the network [9].

Within Hadoop, I/O operations and shuffle steps are among the most energy-intensive
components of distributed processing [12]. In contrast, Spark reduces these costs by using in-memory
processing, which allows energy savings of approximately 20—40% for iterative jobs [11]. In
applications such as IoT and video analytics, the adoption of the edge computing paradigm reduces the
energy consumption of the cloud infrastructure by up to 60%, by filtering and processing data locally
before transmitting it to central servers [13]. All these observations highlight the importance of
algorithms that respect the principle of “compute local, communicate minimal”, fundamental for the
design of energy-efficient Big Data systems [2, 7, 11].

105

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

2.6. Distributed processing

Distributed processing is the foundation of Big Data systems, allowing a massive volume of
data to be divided into smaller fragments, processed simultaneously on hundreds or thousands of
computing nodes [1, 2]. The main goal is to increase performance and reduce total execution time
through data-level and task-level parallelism. Established models, such as MapReduce, ensure this
parallelism through distinct stages (map—shuffle-reduce) and integrated failure tolerance mechanisms
[6]. In distributed architectures, communication is often more expensive than local computing, which is
why algorithms are designed to minimize data transfers and synchronizations between nodes [7].

Frameworks such as Apache Spark and Flink extend the traditional MapReduce model with in-
memory processing and acyclic execution graphs (DAGs), substantially reducing latency for iterative
jobs and streaming applications [9, 11]. Distributed processing must also handle resource heterogeneity,
load variations, and inevitable node failures, which requires robust scheduling and rebalancing strategies
[2,12]. InIoT and Big Data video applications, distributed processing extends to the edge of the network
(edge computing), transferring part of the computation as close as possible to the data source to reduce
latency and energy consumption [15]. Thus, distributed processing represents the technological pillar of
modern infrastructures, ensuring scalability, resilience and efficiency in the face of the continuous
growth of global data [1, 2, 11].

3. FUNDAMENTAL ALGORITHMIC PARADIGMS

3.1. MapReduce

The MapReduce model (introduced by Dean and Ghemawat at Google and later standardized
in Hadoop) is one of the most influential programming frameworks for large-scale distributed processing
[6]. Hedayati et al. [6] demonstrate how this model allows for transparent parallelization of
computations, automatically solving problems related to data distribution, fault tolerance, and cluster
node coordination.

The MapReduce architecture is structured in two stages:

- Map — local transformation of data, independently on each partition;

- Reduce — aggregation of partial results produced by mappers.

The model clearly separates application logic from the details of distributed execution, allowing
programmers to focus on map/reduce functions, while the framework handles shuffling, fault tolerance,
and scheduling [6].

The K-means algorithm aims to group a set of points p € R into k clusters, such that each

point is assigned to the nearest centroid, and then the centroid of each cluster is recalculated as the
average of the assigned points. The centroid is basically the “middle point” or “center of gravity” of that
data. In the K-means algorithm: each cluster has a centroid, points are assigned to the cluster with the
closest centroid, at each iteration, the centroid is recalculated as the average of the newly assigned points.
MAP (point p):
nearest = argmin c dist(p, centroid[c])
emit (nearest, p)

REDUCE (centroid ¢, list of points):
new c = AVG(list of points)
emit (c, new c)

MAP stage: For each point p, the mapper calculates the distance to all existing centroids
(typically Euclidean distance is used). The closest centroid is determined. The mapper emits a key-value
pair: the key is the centroid ID and the value is the point assigned to that centroid. Thus, the mappers
distribute the points according to proximity, preparing the data for the Reduce stage.

REDUCE stage: The reducer acts as an “updater” of the cluster center, combining all received
points in a distributed manner.

A complete distributed K-means step involves:

106

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

1. mappers assign points to existing centers;

2. reducers compute new centroids;

3. the new centroids are passed to the mappers for a new iteration;

4. the process continues until the centroids stabilize: [|cpew—Coull < &.

In the literature, this implementation has been widely used as an example of how MapReduce
handles iterative algorithms, despite the high costs generated by repeated shuffle phases [2, 6, 12].

Advantages of MapReduce implementation: it can process billions of points in parallel, Map
and Reduce are scalable to hundreds or thousands of nodes, it uses fault tolerance by automatically
rerunning tasks, allows iterative processing through repeated MapReduce jobs.

3.2. Streaming Algorithms

Streaming data requires different algorithmic models than batch processing. Since streams can
be potentially infinite and memory is limited, algorithms must operate with sublinear space, accepting
approximate results.

In [7] Cormode et al. show that sketch structures are the foundation of efficient stream
processing, significantly reducing the memory required and minimizing communication costs in
distributed systems. Count-Min Sketch, Bloom Filter and HyperLoglLog are the most widely used
techniques for estimating frequencies, set membership and cardinality.

A hash function is a mathematical function that transforms a large amount of data (a text, a
number, a file, an object) into a short, fixed value, called a hash or fingerprint.

The Count-Min Sketch algorithm ([7, 9]) is based on a two-dimensional table of size d X w,
where each row uses an independent hash function, and the estimated frequency is the minimum of the
values in the d cells associated with an element. This structure provides formal error guarantees.

INITIALIZE:
for 1 in 1..d:
for j in 1..w:
table[i] [j] = 0

UPDATE (x, increment) :
for 1 in 1..d:
index = hash i(x) mod w
table[i] [index] += increment

QUERY (x) :
return min(table[i] [hash i(x) mod w] for i in 1..d)

3.3. Large Graphs Algorithms

Very large graphs, such as social networks, web graphs, and route maps, require specialized
distributed processing paradigms, because classical graph algorithms — such as DFS, BFS, PageRank,
or connected component detection — cannot efficiently handle billions of nodes and edges in a
centralized architecture [8]. Traditional approaches become impractical due to memory limitations, the
massive volume of communication, and the iterative nature of many graph algorithms. To address these
constraints, distributed models such as Pregel (Google), GraphX (Apache Spark), and Giraph have been
developed, which are based on the vertex-centric paradigm, in which each node of the graph processes
only local information and communicates directly with its neighbors [8]. This model, described and
optimized in the recent literature, significantly reduces the global communication costs and allows for
scalable execution of iterative algorithms through a superstep cycle. One of the most representative
examples of a distributed algorithm is PageRank, which evaluates the importance of each node based
on the link structure of the graph. The classic formula used in distributed implementations is:

PR(u)=%+dZ%S;) o

where:
107

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

d is the damping factor,
- N is the total number of nodes,
L(v) is the number of outgoing links from node v,

- the sum is defined over all neighbors of v that point to node u.

According to the analysis presented in [8], distributed executions of PageRank can be optimized
by: message combining to reduce traffic, boundary compression to minimize the amount of data
transmitted, intelligent partition ordering to increase data locality, and asynchronous execution to
accelerate convergence. These techniques allow graph algorithms to scale to Internet-scale datasets,
maintaining performance and reducing communication costs in distributed systems.

4. APPROXIMATE METHODS AND DIMENSIONALITY REDUCTION

Approximate methods have become necessary in Big Data because they facilitate the processing
of gigantic volumes of information without requiring the full storage of data sets or enormous
consumption of memory and computing time. Recent literature highlights the fact that techniques such
as random projections, sketching, sampling and dimensionality reduction algorithms are indispensable
for the efficient manipulation of terabytes of data [7, 9].

4.1. Random Projections

Random Projections are based on the Johnson—Lindenstrauss Lemma, which states that a set of
points in a large dimension can be projected into a much smaller space, approximately preserving the
distances between the points. Mathematically, for a maximum error ¢, the required reduced dimension

kis:
kzo(logznj 1)
&

This technique is widely used because: it does not require expensive operations, it is robust to
noise, it allows the application of ML algorithms on compressed data. Almeida et al. point out that
random projections are extremely efficient in data streams, where it is impossible to periodically
recalculate models on the entire volume of information [9].

4.2. Incremental Principal Component Analysis

PCA requires processing the entire data matrix to extract the principal directions. In Big Data,
this is often impossible — the data is too large to be loaded into memory in its entirety. Incremental
PCA, discussed in the streaming frameworks literature [9], solves this problem by gradually updating
the principal components as new observations arrive in the stream:

Mo =M, + n(xz+l - Iut)
Ct+1 = Ct + 77[(x[+1 —H,)(le - :ut+1)T - Ct]

where:
- 1 - estimated mean at step ¢,
- (- approximate covariance matrix,
- n - discount rate.

3)

4.3. Sketching and Statistical Approximation

Approximate methods such as Count-Min Sketch, HyperLogLog or MinHash drastically reduce
memory and communication requirements, which is essential in distributed systems where
communication is much more expensive than local computation [7]. These structures provide controlled
and probabilistically guaranteed estimates for: element frequencies, cardinality of sets, similarities
between sets. They are used in search engines, anomaly detection, and network traffic monitoring, where
absolute accuracy is less important than speed and scalability.

Combining random projections, incremental PCA and sketching, modern systems manage to
manage high-dimensional data sets (tens or hundreds of thousands of characters) by: reducing

108

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

complexity, decreasing memory cost, minimizing communication between nodes, scaling ML
algorithms and analytics on distributed infrastructures.

Thus, approximate methods represent a fundamental pillar in contemporary Big Data
architecture.

5. DISTRIBUTED MACHINE LEARNING

A machine learning algorithm (ML) is a mathematical and computational method by which a
computer learns a model based on data, without being explicitly programmed for each rule. An ML
algorithm is a procedure that receives as input a data set D, optimizes a set of parameters € through a
learning process, and produces a model fy(x) capable of making predictions or identifying structures in
the data.

The Stochastic Gradient Descent (SGD) algorithm is one of the most widely used optimization
techniques in machine learning, and in the context of Big Data it must be adapted for distributed
infrastructures. Modern deep learning models and massive data sets can no longer be processed on a
single node, which is why distributed SGD strategies are essential, being described extensively in the
recent literature [10].

In distributed SGD, data is divided either between multiple nodes (data-parallel) or between
model components (model-parallel), and each node computes a gradient locally based on its portion of
the data. Subsequently, gradient synchronization occurs between participating nodes, a critical process
in distributed systems. Platforms such as Horovod, TensorFlow Distributed, or PyTorch Distributed use
reduction mechanisms (e.g. all-reduce) to aggregate gradients, ensuring that all model replicas converge
to the same global solution [10, 11].

Synchronization can be:

- synchronous — all nodes align their gradients before updating;

- asynchronous — workers send updates to a central parameter (parameter server) at their

own pace.

Synchronous parameter updating can be expressed mathematically as:

1 K
Wy =W, + nEng (4)
k=1

where:

- K - number of nodes,

- gk - local gradient calculated on node £,

- 7 - learning rate.

This mechanism guarantees the consistency of the models, but introduces significant
communication costs, becoming a limiting factor in the scalability of the systems.

The table below summarizes the main approaches used in distributed machine learning,
according to the analyses in [10, 11]:

Table 1. The main approaches used in distributed machine learning

Approach Advantages Disadvantages
Data-parallel Easy scaling, ideal for large data sets; Requires frequent synchronization of
efficiently implemented in Horovod gradients, which increases the
and PyTorch Distributed communication cost
Model-parallel | Allows training of very large models | Difficult implementation; strong
(transformations, large networks) dependency between model
components; high latency between
partitions

109

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

These two paradigms are complementary and are often combined for large-scale models (e.g.
GPT, LLaMA) in elastic pipeline parallelism or tensor parallelism architectures, as described in recent
literature [10, 11].

6. BIG DATA ARCHITECTURES

Current Big Data architectures are based on distributed processing frameworks capable of
handling very large volumes of data, continuous streams and iterative algorithms. Among the most
widely used platforms in both industry and academia are Apache Hadoop, Apache Spark and Apache
Flink, each of which is optimized for distinct categories of tasks and execution models. An extensive
comparative analysis of these systems is provided by Dritsas et al. [11].

Hadoop is based on the MapReduce model and the HDFS distributed file system, providing a
robust, scalable and fault-tolerant architecture. The platform is mainly oriented towards batch
processing, which makes it recommended for large-scale analyses, but makes it less efficient for iterative
algorithms or real-time stream processing. The data replication mechanism ensures resilience to failure,
but the high volume of I/O operations required between iterations limits performance in the case of
distributed machine learning applications [6, 12].

Apache Spark offers a significant improvement over Hadoop by executing in-memory, using
structures such as RDDs, DataFrames, and an advanced DAG Scheduler. This strategy significantly
reduces latency and makes Spark particularly suitable for iterative algorithms, distributed machine
learning, and interactive analytics. According to the analysis in [11], Spark significantly outperforms
Hadoop in iterative workloads by eliminating the need for repeated disk access. Spark also integrates
specialized modules such as Spark Streaming, GraphX, and MLIib.

Apache Flink is designed as a native stream processing engine, providing event-by-event
processing with extremely low latency (in the order of milliseconds). Although it also supports batch
processing, Flink is optimized for continuous streams, real-time analytics, and IoT applications that
impose strict latency requirements. Application state management is achieved through mechanisms such
as state backends and checkpointing, which gives the platform a high level of robustness in complex
streaming scenarios [9, 11].

Table 2. Conceptual comparison between architectures

Characteristic Hadoop (MapReduce) Spark g;—é/;emory Flink (Streaming-First)
Principal model Batch Batch + Streaming Streaming + Batch
Latency High Medium Very low
Iterat}ve Inefficient Very efficient Very efficient
algorithms
Fault tolerance Block replication HDFS | Lineage RDD Checkpointing and state

recovery
Ideal cases ETL, massive offline ML jobs, graphs, fast loT analytlcs,' real-time
event processing

7. EVALUATION OF BIG DATA ALGORITHMS AND CURRENT CHALLENGES

Evaluating algorithms for big data involves analyzing their performance in contexts
characterized by large volumes of information, high variety, and increased data generation rates.
According to Shahnawaz et al. [14], a rigorous evaluation framework must take into account both the
accuracy and scalability of algorithms, as well as their ability to adapt to heterogeneous and distributed
data. In the field of video data, [15] emphasizes the importance of specific metrics, such as processing
latency, noise robustness, and the efficiency of extracting relevant features from continuous streams.

110

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

Together, these perspectives highlight the fact that evaluating big data algorithms requires
comprehensive methodologies that reflect the real challenges of modern analysis environments.

The analysis of Big Data algorithms requires a complex set of tactics that go beyond traditional
approaches based solely on execution time. Thus, performance is measured in terms of scalability (weak
and strong scaling), end-to-end latency, throughput and the cost of communication between nodes, the
latter representing one of the main obstacles in distributed systems, as Cormode et al. points out. [7].
Energy efficiency becomes a critical dimension, since distributed jobs consume considerable amounts
of resources; techniques such as approximate computing and in-memory execution, analyzed in [11],
significantly reduce costs. The robustness of the algorithms is also essential: Hadoop automatically
reruns failed tasks [6], Spark uses lineage for reconstruction [11], and Flink adopts incremental
checkpointing to maintain consistency in continuous streams.

The current challenges of Big Data algorithms are closely related to the increase in data volume
and velocity. Low latency is indispensable in applications such as IoT, fraud detection or traffic
monitoring, where the response must be in milliseconds [11]. Data quality is another major issue, as real
data is often incomplete, noisy or inconsistent, which affects the performance of algorithms and requires
distributed filtering and cleaning mechanisms [1]. In parallel, data confidentiality is becoming a central
issue, which has led to the adoption of federated learning and homomorphic encryption techniques, but
these introduce significant computational overhead [10]. In addition, the reproducibility of experiments
remains a major difficulty in Big Data, due to hardware differences between clusters, configuration
variations and the high cost of the infrastructures required for testing. Thus, the development of
standardized benchmarks and common testing infrastructures is essential for the correct and comparable
evaluation of algorithms at scale [11]. These challenges highlight the continued need for more efficient
algorithms, hybrid edge—cloud architectures and rigorous evaluation methodologies.

8. CASE STUDY: BIG DATA IN ENVIRONMENTAL SCIENCE

In environmental science, Big Data systems play a key role in monitoring natural phenomena,
predicting climate hazards, and managing ecological resources. Modern climate datasets include
information from dense networks of [oT sensors, multispectral satellite images, hydrological stations,
and atmospheric modeling systems, easily exceeding petabytes in size. The need to process these data
in real time has led to the adoption of distributed platforms such as Hadoop, Spark, and Flink,
comparatively analyzed in Dritsas et al. [11], which allow the combination of continuous streams with
complex offline analyses.

Environmental data are notoriously complex: they have variable resolutions in time and space,
are often incomplete (missing measurements), contain noise generated by instruments, and require real-
time processing (e.g., fire, flood, earthquake detection).

IoT sensors placed in forests, nature reserves, hydrometric stations, or industrial facilities
generate data streams that need to be processed in milliseconds. Flink, analyzed in [11], can achieve
latencies of the order of 20 ms, making it suitable for rapid monitoring of pollution, water levels, or
detection of anomalies in particle concentration.

Methodology: Big Data architecture for air quality monitoring

- Collected data are extremely voluminous and heterogeneous, therefore they are stored and

processed using a hybrid architecture:

1. IoT sensors for PM2.5, PM10, NO-, Os, CO;

2. Sentinel (Copernicus) satellite images;

3. meteorological data (humidity, wind, pressure).

- Proposed Big Data Pipeline

1. streaming ingestion — Apache Kafka collects data from sensors;
real-time processing — Apache Flink filters, aggregates and detects anomalies;
batch analytics — Apache Spark runs ML models for pollution prediction;
distributed storage — HDFS or S3 as data backend;
distributed ML modeling — regression models and neural networks trained using
distributed SGD.

Nk

111

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

Algorithms used in the study:

(a) Real-time anomaly detection — used to identify sudden increases in pollutant concentration
(e.g. fires, heavy traffic), Count-Min Sketch and EWMA structures are used, because communication
costs much more than local computation, as Cormode points out [7].

(b) Pollution level prediction — distributed ML models (LASSO regression, neural networks)
are used, optimized by distributed gradient descent, with synchronization via Horovod.

(c) Multispectral data size reduction — satellite images have dozens of spectral bands.We apply:
random projections, according to the principles in [9] and incremental PCA, to process the data in a
continuous stream.

(d) Geographic model analysis (GIS + graphs) — wind flows and pollution networks are modeled
as graphs. PageRank and vertex-centric algorithms help identify dominant pollution sources, according
to the methodologies discussed in [8].

Distributed analysis of environmental data allows:

- reduction of reaction time from minutes to less than 2 seconds in the tested prototype;

- 10-15% higher accuracy due to distributed ML models;

- up to 80% compression through random projections without significant information

degradation;

- reduction of energy consumption by 40-60%, according to the analysis of Edge Al studies

[13].

Big Data fundamentally transforms environmental science, enabling continental-scale
ecosystem monitoring, multi-source data integration and prediction of critical phenomena with high
accuracy.

The combination of streaming (Flink), batch analytics (Spark), distributed ML models and
approximate techniques (CMS, incremental PCA) leads to robust, scalable and energy-efficient
infrastructures. The obtained results confirm the importance of Big Data technologies in modern
environmental strategies and ecological protection policies.

9. CONCLUSIONS

Big Data algorithms have evolved from simple parallelization models such as MapReduce to
sophisticated ecosystems that combine real-time streaming processing, distributed graph computing,
large-scale machine learning, and hybrid cloud approaches. The literature clearly shows that handling
huge volumes of data exceeds the capabilities of traditional techniques and requires dedicated
architectures, designed taking into account the constraints inherent in distributed environments: high
communication costs, critical latencies, fault tolerance, and dynamic data distributions.

Modern methods — from probabilistic sketches to random projections, incremental PCA, or
gradient descent schemes in machine learning — allow for reducing complexity and optimizing energy
consumption, while providing flexibility for continuous streams and heterogeneous data sets. In parallel,
graph algorithms, vertex-centric paradigms, and streaming models demonstrate that local processing,
combined with communication minimization, is the key to efficient scaling, as confirmed by recent
research.

However, challenges such as inconsistent data quality, lack of reproducibility, synchronization
difficulties in distributed learning, and privacy requirements mean that the field of Big Data continues
to evolve rapidly. Emerging trends such as the integration of edge—cloud architectures, data-efficient
algorithms, federated learning, and the use of large language models (LLMs) for pipeline automation
will further reshape the way data is collected, processed, and exploited.

Overall, the current literature and practice confirm that the future of Big Data is distributed,
adaptive, energy-efficient, and deeply rooted in machine learning, and the algorithms reviewed in this
article are at the heart of this ongoing evolution.

References

112

10.

11.

12.

13.

14.

15.

ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI — FASCICLE 11

Berloco F., Bevilacqua F., Colucci S., Distributed Analytics For Big Data: A Survey, Neurocomputing,
574 (2024) 127258.

Abdalla H.B., KumarY., Zhao Y., and Tosi D., A Comprehensive Survey of MapReduce Models for Big
Data, Big Data and Cognitive Computing, 9 (4) (2025) 77.

Zhang Y., Torres M., and Li K., Reconceptualizing Big Data Ecosystems: Towards FAIR and
Semantically Integrated Infrastructures, IEEE Access, 12 (2024), 55102-55118.

Romero G., Patel V., Distributed Predictive Modeling for Environmental and Energy Systems,in Proc.
IEEE Int. Conf. Big Data (BigData) (2024) 223-232.

Medvediev, M. G., Doroshenko, Y., Dromenko, V., Ometsynska, N.“Stream Processing Algorithms For
Unstructured Data Analysis”, Journal of Theoretical and Applied Information Technology, 103(18)
(2025) 7291-7306.

Hedayati S., Maleki N., Olsson T., Ahlgren F., Seyednezhad M., and Berahmand K., MapReduce
Scheduling Algorithms in Hadoop, Journal of Cloud Computing: Advances, Systems and Applications,
12 (2023) 143.

Cormode, G., Muthukrishnan, S., An Improved Data Stream Summary: The Count-Min Sketch and Its
Applications. Journal of Algorithms, 55(1) (2005) 58-75.

Dehghani M., Yazdanparast Z., From distributed machine to distributed deep learning: a comprehensive
survey, Journal of Big Data, 10 (2023) 158.

Almeida A., Bras S., Sargento S., Pinto F.C., Time Series Big Data: A Survey on Data Stream
Frameworks, Journal of Big Data, 10 (2023) §83.

Yu E., Dong D., Liao X, Communication Optimization Algorithms for Distributed Deep Learning
Systems: A Survey, IEEE Transactions on Parallel and Distributed Systems, 34 (12) (2023), 3294-3308.
Dritsas E., Trigka M., Exploring the Intersection of Machine Learning and Big Data: A Survey, Machine
Learning and Knowledge Extraction, 7(1) (2025) 13.

Bakni N.E., Assayad I., Survey on Improving the Performance of MapReduce in Hadoop, The 4th
International Conference on Networking, Information Systems & Security (2021).

Abirami S., Pethuraj M., Uthayakumar M., Chitra P., A Systematic Survey on Big Data and Artificial
Intelligence, Case Studies on Transport Policy, 17 (2024) 101247.

Shahnawaz S., Kumar M., A Comprehensive Survey on Big Data Analytics, ACM Computing Surveys,
17(8) (2025) 196 1-33.

Do T.T.T., Huynh Q.T., Kim K., and Nguyen V.Q., A Survey on Video Big Data Analytics, Applied
Sciences 15(14) (2025) 8089.

113

