

CONTRIBUTIONS TO INCREASING THE QUALITY OF URBAN LIFE THROUGH THE USE OF AN INTELLIGENT ROAD TRAFFIC MANAGEMENT SYSTEM

Bogdan Gabriel CARP^{1,2}, Mihai GINGĂRAŞU^{2*}, Narcisa Cela PÎNZARIU³, Serghei PALAŞ⁴, Daniela Laura BURUIANĂ²

 ¹ A. I. Cuza Police Academy, Bucharest, Romania
² Faculty of Engineering, "Dunarea de Jos" University of Galati, Romania
³ University of Sheffield, England
⁴ Technical University of Moldova e-mail: mihaigingarasu@yahoo.com

ABSTRACT

Traffic congestion is a phenomenon which occurs when road traffic is disturbed. In Galati city, traffic congestion increases rapidly due to an increase in the number of vehicles on the road. This work is an attempt to analyze the effects of traffic congestion by applying the waiting theory. Traffic congestion is frequent during the day, and the locals accept it as a daily routine. Urbanization in developing countries indicates that more people live in cities than before. The trend of urbanization, the population growth and the increasing number of registered vehicles put pressure on traffic and make life in the urban area more difficult. General data congestion and congestion management are the mitigation measures proposed but they are labor intensive and a heavy investment would be needed. Therefore, in order to find feasible measures, latest technologies such as GIS and GPS help analyze the live traffic situation and suggest cost effective measures to alleviate congestion. A previous attempt was effective in data collection, data analysis and display of results [1, 2]. A Geographic Information System (GIS) is a computer-based mapping tool that geographically analyses events and phenomena occurring on Earth. GIS technology integrates common database operations such as query and statistical analysis with unique viewing and the benefits of geographic analysis provided by maps [2]. In Galati, the GIS system is still not applicable because it has not been purchased by the competent authorities. In Romania, the GIS system is partially implemented. The traffic congestion has begun to be solved globally through GPS positioning technology with vehicle data collection, transport and operation. Using GPS Vehicle will provide direct and objective data on the behavior and status of the trip and the transport system that influences this behavior [3].

KEYWORDS: GPS, GIS, vehicle, traffic congestion, urban life

1. Introduction

Nowadays, there are a number of challenges lying ahead of the transport system. The idea of a Single European Transport Area, promoted by White Paper for Transport 2011, sets the goals to be achieved by 2050. The transportation has to become more competitive and resource efficient within this time frame. The goals for urban transport, in this respect, are to promote the use of cleaner cars and cleaner fuels. The need is also to reduce the number of fatalities and incidents. Yet another challenge is that the amount of traffic in Europe's urban areas has been increasing rapidly during last decades. The task of people involved in urban traffic management is to best allocate the scarce resources of road and kerbside space to potentially competing transport modes, within a network that has finite capacity. A more accessible public transport system has to be prioritized in traffic management.

2. Applications in traffic congestion management

The intelligent system for traffic management implemented in England made an impact in UE legislation by contributing mainly to an increase in the quality of urban life. England, even though they leave UE, is looking for a continuous improvement of the intelligent system of traffic especially because the safety of the population is the most important. The safety of people is achieved by decreasing the number of accidents and by increasing the quality of urban life through controlling and considerable reduction of pollutant emissions in areas with high traffic.

Traffic congestion occurs when a volume of traffic or modal split generates demand for space greater than the available street capacity; this point is commonly termed saturation. A 2011 study in The American Economic Review indicates that there may be a fundamental law of road congestion. The researchers, from the University of Toronto and the London School of Economics, analyzed data from the U.S. Highway Performance and Monitoring System for 1983, 1993 and 2003, as well as information on population, employment, geography, transit, and political factors. They determined that the number of vehicle-kilometers traveled (VKT) increases in direct proportion to the available lane-kilometers of roadways. The implication is that building new roads and widening existing ones only result in additional traffic that continues to rise until peak congestion returns to the previous level [4, 5].

2.1. Decision-makers in policy-making

The role of intelligent transport systems is generated by problems caused by traffic congestion and the development of new information technologies for real-time simulation, control and communication networks, offering the ability to address issues such as managing urban traffic in an innovative environment. Traffic congestion has increased as a result of increased traffic motor vehicles, population growth and changes in population density. Increased urbanization has led to many large cities experiencing high traffic levels in the peak hours, traditionally between 07.00-10.00 and 16.00-19.00. The result is that the road network in many urban areas in Europe operates at or near capacity during several days. The problem of traffic congestion is an increasingly pressing issue and because of the harmful effect it has, there is an increased need to mitigate its consequences.

Congestion reduces the efficiency of transport infrastructure and has negative impacts on travel time and reliability, increases fuel consumption and air pollution. Congestion also has a particularly negative effect on the economy distribution services.

3. Intelligent transport systems to reduce congestion in urban traffic

Proposed intelligent transport systems allow to reduce significantly the idle time in traffic congestions and to increase movement speed of traffic participants, to reduce electrical energy and fuel consumption. Such a solution allows to save up to 26% of electrical energy of the total consumption by city transport, as well to reduce idle time for electric transport at crossroads up to 13% and increase traffic speed up to 28% [6].

> TRAFFIC FLOW MEASUREMENT \downarrow TRAFFIC CONGESTION ANALYSIS \downarrow PREVENTION TECHNIQUE \downarrow FINAL EVALUATION \downarrow RESULTS/ EFFECT

Fig. 1. Steps for Preventing Traffic Congestion

Galati City, one of the most important economic centers in Romania, is under a continuous pressure determined by the increasing road traffic. The system bought responded to the identified needs by the council of the city through the implementation of a complex program to manage the traffic. This included sub-systems of traffic lights, road signaling, communications, urban video surveillance, automatic identification of vehicles' registration numbers, defects management. All the systems will be coordinated in a performant center of control [7].

In Galati county, the intelligent system to manage the traffic on city roads is relatively new, being implemented in august 2016. The purpose of implementing this intelligent system is to fluidize the traffic, to increase the safety of the traffic participant, to reduce the number of accident and road blockages, but also to reduce pollution.

The implemented system is in accordance with the European regulations and allows for the identification in real time of traffic situation, communication between crossroads, modification of traffic lights time considering the number of vehicles. This generates a fluency of vehicles in all 35big crossroads in the city. Also, 26 crosswalks contain synchronized and adapted lights, with an activation system by button which can be pressed by pedestrians. They are also correlated to the crossroads

in the city in order to maintain a better fluency of the traffic.

Developed devices are easily integrated in the existing infrastructure, functioning in united network with wireless communication. They are flexible, modular and re-programmable and allow for fast and easy extending of functionality by user request for the solution of other tasks and adapt them to requirements and standards of different countries [8].

Fig. 2. Work Centre Utilization Report [7]

Number of detected vehicles/ hours

						'																				
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
detector-7-	banda1	17	9	2	2	2	1	2	7	33	70	26	0	0	2	3	40	11	2	3	9	20	8	26	19	314
A8>South	banda2	84	41	17	14	10	12	39	135	287	510	406	444	469	498	503	453	477	556	542	464	423	273	207	149	7013
detector-7-Bld. Cosbuc -	banda1	71	44	26	17	13	18	30	71	218	423	306	375	356	385	420	424	390	458	462	462	341	250	162	130	5852
South> A9	banda2	116	85	45	39	26	28	55	122	384	560	518	512	535	605	576	534	565	601	570	579	519	352	266	199	8391
detector-7-Strada Brailei-	banda1	53	27	12	4	4	4	37	70	207	353	251	257	220	244	268	247	213	257	305	252	230	145	118	83	3861
West>CTP1	banda2	123	85	57	36	25	32	69	105	366	671	517	533	613	638	599	572	612	633	559	577	502	360	280	216	8780
	banda3	80	46	25	22	10	15	29	56	242	456	402	435	478	483	434	444	400	446	422	401	357	255	200	135	6273
detector-7-str. Brailei -	banda1	72	45	19	12	19	15	62	84	222	321	273	315	355	399	375	355	361	363	391	312	297	236	175	136	5214
East>A7	banda2	176	116	78	38	39	37	82	101	373	557	477	554	602	609	616	604	595	737	743	658	514	392	305	259	9262
	banda3	70	53	28	9	10	13	28	55	148	237	230	277	294	325	351	318	316	408	414	356	257	196	155	148	4698
Total vehicles		862	551	309	193	158	175	433	806	2480	4158	3406	3702	3922	4188	4145	3991	3940	4461	4411	4070	3460	2467	1894	14(4	59656

Total vehicles per day

Fig. 3. Machine wise Completed Report A8: Brailei – Cosbuc Street

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2017, ISSN 1453-083X

	Hist 11/10 /	/20	17 0	0:0	0:00	- 13		201	7 00	:00:																	
tector-6	١	lur	nbe	er of	f de	tect	ed v	/ehi	icles	s/ł	nour	s															
00	<u> </u>			;						III.	10			L	3	14	15	16			19		L		22	23	
detector-6- A1	.6>North	-			letect	or-6-	A6>	Sout	h			ector-	6- Ea		12		20		or-6-	Street		ei: W		A8	to de	20	
	Brailei: A	7>	A16							dete	ector-6	6- St.	Braile	i: A6	>A7												
detector-6- ^{St.} lumber of d				cles,	/ hc	ours				dete	ector-6	ò- St.∣	Braile	i: A6	>A7												
detector-6- ^{St.} lumber of c Detector 6	letecte	d v	ehio 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Tota
detector-6- ^{St.} lumber of d		d v		1 24		-		5	6 31								14 236	15 209	16 250	17 274	18 267	19 240	201	131	106	74	Tota 366
detector-6- ^{St.} lumber of c Detector 6	letecte	d v	ehio 0	1	2	3	4			7	8	9	10	11	12	13	115.04		1000				-	-	_	-	
detector-6- St. Iumber of o Detector 6 A16>North	letecte	d v	ehio 0 39	1 24	2 15	3	4	5	31	7	8 214	9 378	10 224	11 200	12 230	13 256	236	209	250	274	267	240	201	131	106	74	366
detector-6- St. Jumber of (Detector 6 A16>North A6> South East> A5	ban ban ban	d v ta1 ta1	ehio 0 39 92	1 24 67	2 15 33	3 8 9	4 5 17	5	31 37	7 51 74	8 214 158	9 378 258	10 224 269	11 200 305	12 230 336	13 256 357	236 363	209 392	250 399	274 428	267 459	240 432	201 344	131 279	106 230	74 203	366 555 421
detector-6- St. Jumber of c Detector 6 A16>North A6> South East> A5 it. Brailei: West-	ban ban ban ->A8 ban ban	d v da1 da1 da3 da3	ehio 0 39 92 52	1 24 67 30 28	2 15 33 11	3 8 9 9	4 5 17 6	5 12 4	31 37 26	7 51 74 62	8 214 158 191 240	9 378 258 297 456	10 224 269 245 266	11 200 305 282 303	12 230 336 286	13 256 357 294	236 363 296 386	209 392 280	250 399 253 370	274 428 354 516	267 459 309	240 432 282	201 344 260	131 279 176	106 230 126	74 203 87	366 555 421 551
detector-6- St. Jumber of C Detector 6 A16>North A6> South East> A5 St. Brailei: West-	ban ban ban ->A8 ban ban	d v da1 da1 da3 da3 da3	ehic 0 39 92 52 43	1 24 67 30	2 15 33 11 13	3 8 9 9 5	4 5 17 6 5	5 12 4 6	31 37 26 47	7 51 74 62 85	8 214 158 191	9 378 258 297	10 224 269 245	11 200 305 282	12 230 336 286 333	13 256 357 294 379	236 363 296	209 392 280 359	250 399 253	274 428 354	267 459 309 487	240 432 282 434	201 344 260 276	131 279 176 226	106 230 126 139	74 203 87 108	366 555
detector-6- St. Jumber of C Detector 6 A16>North A6> South East> A5 St. Brailei: West-	ban ban ban >A8 ban	d v ta1 ta1 ta3 ta3 ta1 ta1 ta2	ehio 0 39 92 52 43 202	1 24 67 30 28 138	2 15 33 11 13 81	3 8 9 9 5 46	4 5 17 6 5 45	5 12 4 6 45	31 37 26 47 83	7 51 74 62 85 144	8 214 158 191 240 391	9 378 258 297 456 636	10 224 269 245 266 525	11 200 305 282 303 634	12 230 336 286 333 671	13 256 357 294 379 716 382 360	236 363 296 386 681	209 392 280 359 684	250 399 253 370 675	274 428 354 516 782 418 396	267 459 309 487 782	240 432 282 434 748 432 396	201 344 260 276 618 331 251	131 279 176 226 481 267 210	106 230 126 139 369 229 121	74 203 87 108 289 175 84	366 555 421 551 1046 536
detector-6- St. Number of a Detector 6 A16>North A6> South East> A5 St. Brailei: A7>/	ban ban ban ban ban ban ban ban ban ban	d v da1 da1 da3 da3 da3 da1 da2 da3 da1	ehic 0 39 92 52 43 202 93 38 219	1 24 67 30 28 138 74 27 156	2 15 33 11 13 81 32 16 79	3 8 9 5 46 10 6 72	4 5 17 6 5 45 14 5 40	5 12 4 6 45 14 7 59	31 37 26 47 83 38 24 96	7 51 74 62 85 144 66 53 192	8 214 158 191 240 391 176 211 603	9 378 258 297 456 636 279 453 898	10 224 269 245 266 525 253 245 732	11 200 305 282 303 634 303 262 750	12 230 336 286 333 671 316 309 814	13 256 357 294 379 716 382 360 793	236 363 296 386 681 340 327 744	209 392 280 359 684 336 303 719	250 399 253 370 675 343 306 747	274 428 354 516 782 418 396 795	267 459 309 487 782 439 380 774	240 432 282 434 748 432 396 729	201 344 260 276 618 331 251 672	131 279 176 226 481 267 210 493	106 230 126 139 369 229 121 402	74 203 87 108 289 175 84 283	3666 5555 4211 5511 1046 5360 479 1186
detector-6- St. Number of C Detector 6 A16>North A6> South East> A5 St. Brailei: West-	ban ban ban >A8 ban 16 ban ban ban	d v da1 da1 da3 da3 da3 da1 da2 da3 da1 da2 da3 da1 da2 da3	ehic 0 39 92 52 43 202 93 38	1 24 67 30 28 138 74 27	2 15 33 11 13 81 32 16	3 8 9 9 5 46 10 6	4 5 17 6 5 45 14 5	5 12 4 6 45 14 7	31 37 26 47 83 38 24	7 51 74 62 85 144 66 53	8 214 158 191 240 391 176 211	9 378 258 297 456 636 279 453	10 224 269 245 266 525 253 245	11 200 305 282 303 634 303 262	12 230 336 286 333 671 316 309	13 256 357 294 379 716 382 360	236 363 296 386 681 340 327	209 392 280 359 684 336 303	250 399 253 370 675 343 306	274 428 354 516 782 418 396	267 459 309 487 782 439 380	240 432 282 434 748 432 396	201 344 260 276 618 331 251	131 279 176 226 481 267 210	106 230 126 139 369 229 121	74 203 87 108 289 175 84	366 555 421 551 1046 536 479

Fig. 4. Machine wise Completed Report A8: Brailei – Cosbuc Street

3.2. Negative impact of the traffic congestion

• Wasting time of drivers and passengers in blocked traffic affects the economic health of the nations. • Wasted fuel increases air pollution and carbon dioxide emission because of the increased idling, acceleration and braking.

• Due to blocked traffic, emergency vehicles may get delayed in reaching their destination where they are urgently needed.

• Spillover effect from congested main routes to secondary roads and side streets as alternative routes is attempted which affects the real estate prices.

• Delays may result in late arrival for employment, meetings and education, resulting in lost business, disciplinary action or other personal losses [4, 8].

4. How does the EU contribute to improving the quality of the urban environment?

Road traffic significantly affects the health of the population in overcrowded urban areas where traffic jams are formed. This is most obvious today when the chronic disease age remains a link between the health of the population and the environment.

People choose to live in urban areas so they can have a better quality of life. They want to be at the

heart of economic activity, and to have more job opportunities and other social and economic advantages. However, city living brings a range of challenges. While living in close proximity to our daily activities can be more efficient and contributes to sustainability, other factors such as air pollution can be far more acute in cities.

Total vehicles per day

Overcrowding, traffic pollution, noise, and industrial emissions are just a few of the issues that have to be constantly monitored and addressed to achieve a high quality of life without high environmental costs. But doing this will also bring benefits beyond city borders.

The Urban Environment is important for all of us, because so many of us live in cities. The European Commission recognizes the role that cities play in the lives of so many Europeans and has committed itself to act in this area. Urban environments directly influence the lives of millions of European citizens and, in turn, have a substantial impact on the wider environment. European cities need more than ever to be sustainable and should offer the kind of quality of life and opportunity that make people want to live there and make businesses want to invest [9].

4.1. The EU and the urban environment

Key elements of the EU's approach to the urban environment [10]:

1. The Thematic Strategy on the Urban Environment aims for better implementation of the

existing EU environmental policies and legislation at local level through the exchange of experience and good practice between Europe's local authorities, in order to achieve 'a better quality of life through an integrated approach concentrating on urban areas.' Its principles and approaches are reflected further in other strategies such as the Thematic Strategy on Air Pollution.

2. The Leipzig Charter on Sustainable European Cities demonstrates a further commitment to making our cities healthy, attractive and sustainable places to live and work in.

3. The renewed Sustainable Development Strategy for the EU calls for the creation of sustainable local communities with a high quality of life, attention to urban transport and greater cooperation between urban and rural areas.

4. The renewed Lisbon Strategy sets as a priority the high quality of urban environments to 'make Europe a more attractive place in which to invest'.

5. The Europe 2020 Strategy builds on the Lisbon Strategy and sets out a broader approach aimed at achieving a resource efficient Europe. This means decoupling economic growth from the use of resources, supporting the shift towards a low carbon economy, increasing the use of renewable energy sources, modernizing our transport sector and promoting energy efficiency – actions that will affect the cities of Europe.

5. Conclusions

The importance of road transport in the Union's transport policy is also highlighted by the share of this mode of transport in both freight and passenger transport. Cities make up only two percent of the earth's surface, yet they are home to over half of the world's population. In Europe, the proportion of urban dwellers is even higher. Today, nearly 75% of

Europeans live in cities and urban areas, and by 2020 this is expected to rise to 80%.

In the light of these considerations, the proposed work justifies its importance and usefulness in the field of traffic management in order to improve the quality of urban life.

We considered it useful to highlight the general objectives of EU policy in the transport sector, especially in metropolitan areas, where pollution is expected to increase, as a consequence of increased vehicle purchases.

EU legislation on road transport must be adopted taking into account social, technical, tax, safety and environmental regulations. That is why road transport regulations generally have the objective of providing a unitary framework for Member States in the field.

References

[1]. Chandra R., Mohan Rao A., Kanaga Durai B., Lakshmi S., *GIS Application in Traffic Congestion Management*, Proc. of Int. Conf. on Recent Trends in Transportation, Environmental and Civil Engineering, p. 66, 2011.

[2]. Harvey J. Miller, GIS based dynamic traffic congestion modelling to support time-critical logistics, Department of Economics, University of Alberta, Canada, 1999.

[3]. McNally M. G., Marca J. E., Rindt C. R., Koos A. M., *GPS/GIS Technologies for Traffic Surveillance and Management*, Institute of Transportation Studies and Department of Civil & Environmental Engineering, 2002.

[4]. ***, https://ortus.rtu.lv/science/en/innovations/20.

[5]. Mala S. P. Varma, Minimization of Traffic Congestion by Using Queueing Theory, IOSR Journal of Mathematics (IOSR-JM), vol. 12, issue 1, ver. II, p. 116-122, 2016.

[6]. Roger P. Roess, Elana S. Prassas, William R. McShane, *Traffic Engineering*, Third Edition, ISBN 0-13-142471-8.

[7]. ***, http://ro.uti.eu.com/index.php?pageid=1307&lang=ro.

[8]. Duranton Gilles, Turner Matthew A., *The Fundamental Law of Road Congestion: Evidence from U.S. Cities.* American Economic Review, 101, 6, p. 2616–2652, 2012.

[9]. ***, Making our cities attractive and sustainable How the EU contributes to improving the urban environment, Luxembourg: Publications Office of the European Union 2010, 36 p.

 $\label{eq:linear} \ensuremath{\texttt{[10]}}\xspace. \ensuremath{\texttt{***}}\xspace, \ensuremath{\texttt{http://ec.europa.eu/regional_policy}.$