

INDUSTRIAL RESEARCH IN THICKER HEAVY PLATES (70-80 MM) HSLA STEEL MICRO-ALLOYED WITH Mo-Nb-Ti THERMO-MECHANICAL CONTROL PROCESS IN ARCELORMITTAL GALATI

Costel DURDUC, Liviu GURAU, Elena DRUGESCU, Viorica MUSAT

"Dunarea de Jos" University of Galati, 47 Domneasca Street, RO-800008, Galati, Romania e-mail: costel.durducroibu@arcelormittal.com, liviu.gurau@arcelormittal.com, elena.drugescu@ugal.ro, viorica.musat@ugal.ro

ABSTRACT

Thermomechanical rolling (TMR or TMCP) is a special rolling process resulting in an extremely high-strength, fine-grained substructure which simultaneously offers very good toughness and cold formability. TM products have much lower carbon content and consequently are much less susceptible to cold cracks during welding. In ArcelorMittal Galati the challenge was to increase for structural steel the feasibility from 50 up to 80 mm and targeted plate thickness without ACC mode. Slabs thickness produced in AMG with maximum 250 mm thickness corresponding to almost the maximum ratio of 3:1 between slabs and targeted plate thickness according to the EN 10025/4/2004. TM rolled steels performed in industrial trial presented in this paper were performed in Heavy Plate Mill no 2 in ArcelorMittal Galați using computer process SIROLL assisted by AGC system. The main goal of this experimental rolling is to provide a concise and complete overview of the rolling process with higher amount of deformation below T_{nr} (non-recrystallisation temperature) and close to A_{r3} in austenite region, and to address the potential to optimize it.

KEYWORDS: thermomechanical steel, thicker heavy plates, 70 mm, 80 mm,

 T_{nr}

Nomenclature:

B: flat background

c: sound velocity

a: scattering angle

T: fitting parameter for a constant radial temperature gradient

1. Introduction

In a world in continuous competition it is a challenge to perform higher strength steel like HSLA [1, 9, 10] (higher strength low alloyed). Usual thicker heavy plates over 30 mm thickness are produced by the most important players on the market steel in TMR [2] mode (thermo-mechanical control process) followed by ACC mode (accelerated control cooling). In ArcelorMittal Galati we managed to produce thicker plates up to 50 mm without ACC [3] mode for structural steel. Now, the challenge was to increase the feasibility up to 80 mm corresponding to almost the maximum ratio 3:1 between slab produced in AMG and end targeted plate thickness, from 250 to

80 mm. The trials were performed in ArcelorMittal Galati in industrial conditions - Heavy Plate Mill [4] (equipped with two quarto reversing mills stand). Rolling simulation with new chemical compositions based on low alloying on Mo [5], Nb [6], Ti [7] and rolling schedule was done using SIROLL Level 2 Automation system. We checked if the process parameters targeted, namely TBT (transfer bar thickness), SRT (start rolling temperature) and FRT (final rolling temperature) below the nonrecrystallization temperature Tnr close to critical point Ar3 can be reached without the overall stand technical limit: force, torque, speed. The value of T_{nr} and A_{r3} is raised by the addition of micro-alloying elements: Nb and Ti. For these trials were used two slabs with 250 thicknesses and two plates were rolled, with 70 and 80 mm targeted thickness in TMR mode. The parameters monitored, that is TBT, SRT, FRT, precalculated in simulation, were reached in industrial rolling conditions with a delta admitted for each parameter: TBT = \pm 3 mm; SRT and FRT = \pm 10 °C. Total amount of deformation \approx 58% below T_{nr} was

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2016, ISSN 1453 – 083X

distributed in 6 rolling passes. The speed of WR (work rolls) was constant at 2 m/s, leading to uniformity of grain size in rolling direction, despite the high targeted thickness. Plates were cooled in pile for dehydrogenation purpose. All the tests were performed in the authorized lab of AMG in order to characterize the mechanical properties [5] of material:

- Spectral analysis: to compare heat analysis on ladle with end product;
- Mechanical tests:
 - Tensile test: UTS [MPa]; Ys [MPa]; Elongation E [%];
 - Charpy-V notch test toughness KV values [J];
- Metallographic analysis, SEM and Optical: microstructure, substructure, segregations and inclusions.

2. Experimental setup

SIROLL rolling simulation was done and screenshot of HMI was captured in Figure 1.

SIROLL software – level 2 automation of rolling process in current use has a simulation module. the process parameters were checked: force, torque and speed supposed to be in stand limits. The metallurgical parameters checked were: SRT_Q1; TBT; SRT_Q2; FRT_Q2 supposed to be in the established theoretical domain with max \pm 5% of deviation. A screenshot image with rolling simulations for a plate targeted with 55 mm in TMR is shown in Fig. 1:

 0										4	ArcelorM		SIEMEN V A I 🕸
	🛝 Mod inreg	jistrare								0	oe r		- 8
ions	Mod inregistrare												
al 🔺 w	Salvat	CP1	CP:	2	CP3	3	Programat						
			I		J								
-	Brame		Pass	Details									
a cuptor	Filtering - 18499 slab	IS 🖉	1 Trec	Dir.	Gr. in.	Gr. ies.	Lat. ies.	Lung. ies.	Salt	Forta	Viteza		Ex Tem
<u>a</u>	Program	<u>×</u>			[mm]	[mm]	[mm]	[mm]	[mm]	[ton]	[m/s]	[ton*m]	[degC]
~	[1		250.0	220.5	1403	2500.0	222.3	1752	2.0	1595	1187
registrare	Bram		2		220.5	190.3	1405	2896.0	191.6	1835	-2.0	1670	1187
-	Selected							TURN					
proces	Id brama	TMCP1	3	\rightarrow	190.3	169.9	2887	1574.0	169.2	3030	2.0	2283	1186
ninare	. 1	S35512+N	- 4	4	169.9	149.2	2888	1793.0	148.1	3056	-2.0	2295	1186
2	Aliaj	N+2CCCC				127.4	2889					2259	
~	Dimensiuni b	250 x 1400 x 2205 mm	- 5		149.2	127.4	2889	2099.0	126.1	2983	2.0		1185
proces inare	Dimensionino I		6		127.4	127.4	2889	2099.0	137.4	0	-2.0	0	1184
	Tat. Dim.	55 x 2090 x 6714 mm				0	SCILL	ATIO	N (326	sec)			
								TURN					
etri Model	Program	Id brama	- 7	\rightarrow	127.4	110.3	2097	3349.0	108.7	2622	2.0	1761	1046
ratori	CAMPFICTIV	C1	8	-	110.3	91.9	2098	4021.0	90.2	2549	-2.0	1738	1044
	CAMPFICTIV	P460NL2	9		91.9	91.9	2098	4021.0	101.9	n	2.0	0	1041
Name	CAMPFICTIV	TEST P460NL2			51.5		SCILL				2.0	0	1011
Name	CAMPFICTIV	TMCP1	10		91.9	81.7	2099	4520.0	80.6	3492	2.1	1426	778
	CAMPFICTIV	testCostel											
	CAMPFICTIV	testCostel2	11	+	81.7	71.4	2099	5173.0	69.9	3700	-2.1	1502	779
	CAMPFICTIV	testReroll	12	\rightarrow	71.4	62.2	2100	5941.0	60.6	3689	2.1	1403	778
	CAMPFICTIV	testS355J2N16mm	13	-	62.2	55.0	2100	6718.0	53.9	3297	-2.1	1109	776
	CAMPFICTIV	testgav12mmmm	14		55.0	55.0	2100	6718.0	65.6	0	2.7	0	774
	CAMPFICTIV	testgav14mmnl	14	<u> </u>	55.0	55.0	2100	6/10.0	65.6	U	2.7	U	//4
	CAMPFICTIV	testgav6mm											
	CAMPFICTIV	testgav6mmmn											
	CAMPFICTIV	testgav6mmsw											
	CAMPFICTIV	testgav6mmsw2											
	CAMPFICTIV	testgavBad12mmNR											
	937650	937650-1-931941											
	728481	728481-1-924640	I Rece	ived pas	s schedule for	slab TMCP1	at 28/04/2015	11:12:12		Recal	culare	Sa	lvare
	Detalii PDI	TM data										Inc	chidere
~													

Fig. 1. Rolling simulation on 55 mm plate targeted - SIROLL

2.1. Matrix chemical composition

 $2\,$ slabs with $M1\,$ - chemical composition in target and realized elements (Table 1) were allocated to this industrial trial.

The improved property combination of strength and toughness was made possible by maximizing

grain refinement thus substituting for the strengthening effect of carbon. In addition, modern steel making processes allow the mass production of low sulfur steels [8]. Figure 1 indicates, which improvements in ductility are achieved, especially in transverse and through thickness direction (5), by lowering the sulfur content.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2016, ISSN 1453 – 083X

					M1				
C min	C max	Mn min	Mn max	Si min	Si max	Si target	S realized	P min	P realized
0.085	0.100	1.250	1.400	0.250	0.400	0.330	0.004	0.000	0.012
N max	N target	$\sum_{(Ni+Cu+Cr)}$	Mo min	Mo max	$\sum \min_{(Nb+Ti+V)}$	∑ max (Nb+Ti+V)	Ca min	Ca max	H2 realized
0.007	0.006	0.50	0.055	0.065	0.050	0.078	0.0005	0.0015	0.00026

Table 1. Chemical composition in mass percentage %

Table 2. Data	Table 2. Data identifications for slabs used in trial Slab dimensions Mother plat		
	Slab dimensions	Mother plate	

	Tueses	L !!!		Sla	ıb dimen	sions	Mother plate target					
	Tracea	DIIILY			[mm]		[mm]					
Program	Daughter slab	Heat no.	Bauman class	Length	Width	Thickness	Length Width Thickness Q					
171121	1	935090	1	2620	1500	250	6000	2000	70	7.70		
171122	1	935090	1	2995	1500	250	6000	2000	80	8.80		

Fig. 2. Sulphur content

In order to obtain the required properties in thermomechanical rolling of heavy plate, a high deformation in the temperature range of non-recrystallization of austenite is to be introduced. The finish rolling temperature reaches in the metastable austenite the critical point A_{r3} .

The mechanical properties required are presented in Tables 3-5 according to the European standard for structural steel with delivery conditions in thermo-mechanical rolling state EN 10025/4 of 2009.

Afterwards, rolling process sampling was taken in order to check mechanical characteristics.

Table	3.
-------	----

EN10025/4 require	ements: Yield s	trength; Tensi	ile strength, E	longation and	carbon (equivalent
Thickness	Steel grade	YS min [MPa]	TS min [MPA]	TS max [MPa]	Е %	CEV [%]
<40 mm <=63 mm	S355M	335	450	610	22	0.40
<40 IIIII <=03 IIIII	S355ML	335	450	610	22	0.40
<63 mm <=80 mm	S355M	325	450	610	22	0.45
<03 mm <=80 mm	S355ML	325	450	610	22	0.45

Table 4.

Minimum values of impact ener for thermomechanical rolled stee				-			-	
Thickness	Steel grade	+20	0	-10	-20	-30	-40	-50
(0.80	S355M	55	47	43	40	-	-	-
60-80mm	S355ML	63	55	51	47	40	31	27

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2016, ISSN 1453 – 083X

			Table 5.	
	Z Test units f	for fla	t products - extract from EN	N10164-2004
Quality class	Test units for S>0.0	005%	Test units for S<=0.005% Cast d	<i>d</i> Products with the same heat
	Parent plate		max 40 t	treatment.
Z15	if agreed	xe	х	e Unless otherwise agreed at the
Z25	Х	-	xe	time of the order.
Z35	Х	-	xe	

Table 5

3. Thermomechanical rolling process

Our purpose is to avoid the accelerate cooling, that means the rolling schedule will target the frt close to A_{r3} . Rolling process will be divided in two phases. One phase will be in roughing area with equalizing and broadsiding sequence up to transfer bar thickness between two stands – roughing mill and finishing mill. After oscillation time to achieve SRT in finishing mill, finishing sequence will be rolled. FRT will reach the limit of Ar_3 in austenitic zone.

Trial summary:

4 slabs used; Total qty = 37 t; Thickness targeted: 60; 70 and 80 mm.

Results:

70 mm - 1 slab - 1 pass in full auto mode; 80 mm - 1 slab - 1 pass in full auto mode; **TMR** = Thermomechanical rolling process; **TBT** = transfer bar thickness; **SRT** = start rolling temperature; **FRT** = final rolling temperature.

For both plates rolled with thickness 70 and 80 mm tension tests were performed in transverse direction

Table 6. Process parameters data

	Rolling process parameters										
Type of Rolling process	Preset L2 AGC [°C]	SRT Q1 [°C]	Preset L2 AGC TBT [mm]	TBT exit thick [mm]	SRT preset L2 AGC [°C]	SRT Q2 [°C]	FRT preset L2 Q2 [°C]	FRT Q2			
Auto	1148	1147	133	130	856	853	783	778			
Auto	1153	1150	133	131.2	853	839	781	776			

4. Trial lab results

For toughness properties Charpy V-notch test was performed. Tests were performed at top and bottom of surface plate, the toughness guarantee being at -20°C. For S355ML with toughness guarantee at -40°C, the minimum limit is 325 MPa and it was accomplished.

Z trough-thickness coefficient is very good for such thicker plate of 7-80 mm, with an average value higher than Z35 condition at 38% (see Fig. 4).

Very good values for TS in middle of the targeted range, and for YS it is in sustainable average with 40 MPa, higher than the required minimum limit of 335 MPa for S355M - meaning toughness guarantee at -20 °C. For S355ML with toughness guarantee at -40 °C the minimum limit is 325 MPa and this was accomplished.

Fig. 3. Mechanical properties TS and YS

Z trough-thickness coefficient is very good for such thicker plate of 7-80 mm with an average value higher than Z35 condition at 38% (see Fig. 4).

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2016, ISSN 1453 – 083X

Lab sample no.	Program	mother plate	heat no.	Thickness [mm]	Steel grade fit	Steel grade fit	Standard fit	TS min S355 M	TS min S355 ML	TS lab	TS max S355 M	TS max S355 ML	YS min S355 M	YS min S355 ML	YS lab MPa	E %
3317 top	171121	1	935090	70	S355M	S355ML	EN10025/4	450	440	530	610	600	335	325	381	34
3317 bottom	171121	1	935090	70	S355M	S355ML	EN10025/4	450	440	518	610	600	335	325	375	35
3316 top	171122	1	935090	80	S355M	S355ML	EN10025/4	450	440	519	610	600	335	325	364	32
3316 bottom	171122	1	935090	80	S355M	S355ML	EN10025/4	450	440	518	610	600	335	325	362	32

Table 7. Mechanical properties: TS and YS in [MPa] and elongation in percentage %

Table 8. Trough-thickness Z coefficient

Lab sample no.	Thickness [mm]	Z min [%]	Z [%]
		35	39.3
3317	70	35	38.2
		35	39.1
		35	36.9
3316	80	35	38.2
		35	38.3

Fig. 4. Z coefficient

Lab sample no.	Thickness [mm]	V-notch test directions	Test Temperature [°C]	KV1	KV2	KV3	KV average	KV min S355M	KV min S355ML
3317/F1 1/4	70	longitudinal	-20	238	240	229	235.7	40	47
3317/F1 1/2 middle	70	longitudinal	-20	110	98	107	105.0	40	47
3317/F2 2 mm at bottom	70	longitudinal	-20	192	202	184	192.7	40	47
3316/F1 1/4	80	longitudinal	-20	210	224	218	217.3	40	47
3316/F2 1/2 middle	80	longitudinal	-20	58	59	42	53.0	40	47
3316/F2 2 mm at bottom	80	longitudinal	-20	220	219	208	215.7	40	47

Table 9. Charpy V-notch test at -20 °C in longitudinal direction

Charpy V-notch tests were performed at two temperatures in order to check both steel grade S355M and S355ML do to the fact that the differences are given by the test temperatures: -20 °C, and -40 °C. (*see Table 9 and 10*).

Figure 5 shows very good value for toughness also in middle thickness, in average higher than 100 J.

Fig. 5.

In Figure 6 we can observe good toughness values for 80 mm thickness on surface, meeting the standard requirement - in the middle of lower limit.

Very good toughness values [Joules] can be noticed in Fig. 7 on surface as standard requirements demand, but lower than minimum limit in average 20 Joules at -40 °C test temperature.

Fig. 6.

Lab sample no.	Thickness [mm]	V-notch test directions	Test Temperature [°C]	KV1	KV2	KV3	KV average	KV min S355ML
3317/F1 1/4	70	longitudinal	-40	120	116	101	112.3	31
3317/F1 1/2 middle	70	longitudinal	-40	68	19	20	35.7	31
3317/F2 2mm at bottom	70	longitudinal	-40	162	184	168	171.3	31
3316/F1 1/4	80	longitudinal	-40	170	168	28	122.0	31
3316/F2 1/2 middle	80	longitudinal	-40	8	9	8	8.3	31
3316/F2 2mm at bottom	80	longitudinal	-40	162	158	30	116.7	31

Fig. 7.

Fig. 8.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N°. 2 - 2016, ISSN 1453 – 083X

Variations on toughness values [Joules] in Fig. 8 on surface according to standard requirements, lower than the minimum limit, also in average 8 Joules at -40 °C test temperature for 80 mm thickness.

Fig. 9. Metallographic analysis - sample no. 3317 - thick. 70 mm at surface - 2 mm deep in thickness

Fig. 10. Metallographic analysis - sample no. 3317 - thick. 70 mm and SEM in middle and bottom

Discussion on metallographies 70 mm thickness:

- Lamellar type of ferritic-pearlitic structure, partial decarburization 115 μ m on the edge, accicular aspect;
- Cementite presence at the grain boundaries;
- Pearlitic structure has a different grade of dispersion;

- Lamellar type of coarse sorbite-pearlitic disbanded structure;
- Small segregations; 1. nitrides presence orange in middle.
- Grain size:
 - 1. top 7÷9.5 points;
 - 2. middle $6\div9$ points;
 - 3. bottom $7 \div 9.5$ points.

Fig. 11. Metallographic analysis - sample no. 3316 - thick. 80 mm at surface - 2 mm deep in thickness

Fig. 12. Metallographic analysis - sample no. 3316 thick. 80 mm in middle thickness

Fig. 13. Metallographic analysis - sample no. 3316 thick. 80 mm at 2 mm deep thickness from bottom surface

Discussion on metallographies 80 mm thickness:

• Lamellar type of ferritic-pearlitic structure, partial decarburization 270 μ m on the edge, accicular aspect.

• Pearlitic structure has a different grade of dispersion.

• Lamellar type of coarse sorbite-pearlitic disbanded structure.

- Grain size:
 - 1. top $7 \div 9.5$ points;
 - 2. middle $6\div9$ points;
 - 3. bottom $7\div9.5$ points.
- SWOT analysis:

Strength:

• S355M steel grade will cover the thickness range from $50.01 \div 80$ mm.

• Thermo-mechanical rolling process – full auto mode.

Weakness:

• Time of production around 18 minute/mother plate.

Opportunities:

- Increased thickness range up to 84 mm.
- Preservation of the same chemistry.
- Added value.
- Fine tuning of rolling process.

Threats:

Occurrence of segregations in the middle of the higher thickness.

5. Conclusions

With the actual chemical compositions used in this experimental rolling we are confident about the

feasibility for steel grade S355M to cover the thickness range from 50.01 up to 80 mm.

In order for the steel grade S355ML to start to increase the thickness range, in the first step the slab dimensions should be changed or different type of rolling should be used do to the lowest toughness achieved in the middle thickness.

References

[1]. ***, *ASM Handbook*, vol. 1, Properties and Selection: Irons, Steels, and High Performance Alloys, Section: Carbon and Low-Alloy Steels, HSLA Steels. 01 Sep 2005.

[2]. Prabal Gumar Ray, Ratan Indu Gangulay, Ashok Kumar Panda, Determination of Recrystallization stop temperature (TR) of an HSLA steel, Journal of Steel and related Materials - published in 2004.

[3]. Jian Fang, Experimental study on the relationship between impact fracture properties and titanium addition for HSLA steels, Technical Center, Baoshan Iron and Steel Co., Ltd., Shanghai 201900, China.

[4]. ***, http://galati.arcelormittal.com/about-s/arcelormittal-profile.

[5]. Hashimoto Shunichi, et al., Effects of Nb and Mo addition to 0.2% C-1.5% Si-1.5% Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets, ISIJ, p. 1590-1598, 2004.

[6]. Craven A. J., He K., Garvie L. A., Baker T. N., Complex heterogeneous precipitation in titanium-niobium microalloyed Alkilled HSLA steels-I. (Ti, Nb) (C, N) particles. Acta Materialia, 48 (15), p. 3857-68, 25.09.2000.

[7]. Kunishige K., Nagao N., Strengthening and toughening of hot-direct-rolled steels by addition of a small amount of titanium, ISIJ International, 29 (11), p. 940-946, 1989.

[8]. Costel Durduc-Roibu, Elena Drugescu, Effect of intercritical hot rolling deformation on steel grade for welded pipes with lean chemistry, The annals of "Dunarea de Jos" University of Galati, Fascicle IX, Metallurgy and Materials Science, p. 171-178, 2012.