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ABSTRACT 
 

Mathematical modeling of stress generation and heat transfer in casting 
processes is a difficult and complex subject that is now receiving increased 
attention. In this paper, we study a dynamic problem which describes the frictional 
contact between an elastic-viscoplastic body (a deformable product of casting 
process: slab, bloom etc.) and a rigid obstacle (walls of the mold or cilindrical rolls 
system employed for support – traction – soft reduction) in complicated conditions 
concerning heat conduction on contact interface in the solidification process. 

In the next sections we will briefly formulate the fundamentals of the 
kinematics for a large deformation approach and the basic equations governing our 
model. After this, we will explain, in more details, the classical problem statement 
and the foundation of the weak formulation of this problem, which consist of certain 
variational inequalities for the viscoelasticity and viscoplasticity parts, and, a 
variational parabolic equation for the heat conduction part.  

   
KEYWORDS: elastic-viscoplastic materials, thermal conduction, dynamic 

contact, variational inequality, continuous casting 
 

1. Introduction 
 

In the continuous casting process, illustrated by 
a schematic representation in Figure1 molten metal is 
poured from the ladle into the tundish and then 
through a submerged entry nozzle into a mould 
cavity. 

The mould is water-cooled so that enough heat 
is extracted to solidify a shell of sufficient thickness. 
The shell is withdrawn from the bottom of the mould 
at a “casting speed” that matches the inflow of metal, 
so that the process ideally operates at steady state. 
Below the mould, water is sprayed to further extract 
heat from the strand surface, and the strand eventually 
becomes fully solid when it reaches the “metallurgical 
length”.  

Solidification begins in the mould, and 
continues through the different zones of cooling while 
the strand is continuously withdrawn at the casting 
speed. Finally, the solidified strand is straightened, 
cut and then discharged for intermediate storage or 
hot charged for finished rolling. 

 

The paper is organized as follows: 
• In Section 2 we present the statement of 

the thermo-mechanical problem and its variational 
formulation; 

• In Section 3 we propose our main 
existence and uniqueness results; 

• Section 4 is reserved to the concluding 
remarks; 

 

 
 

Fig. 1. Schematic representation of Continuous 
Casting Process [6], [12]. 
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1. Schematic of tundish and mould region of 
continuous casting process and of specific 
contacts; 

2. Thermo-elastic-viscoplastic contact between  
slab and the support- rolls on secondary cooling 
zones (detail in Figure 2.); 

3. The contact between slab and the traction-soft 
reduction  rolls on secondary cooling zones; 

 

 
Fig. 2.  The contact between slab and  

support rolls. 
 

2. Problem statement and variational 
formulation 

 
In earlier mathematical publications there were 

several simplifications assumed recording to which 
the deformable bodies were linearly elastic. However, 
numerous recent studies are dedicated to the 
modeling, variational analysis and numerical 
approximations of contact problems involving 
rheological properties of the materials. 

Moreover, a variety of new and modified 
contact conditions have been employed, reflecting a 
variety of possible physical contact settings and 
conditions. 

Now, we describe the model for the physics 
process and derive its weak (variational) formulation. 

     An elastic-viscoplastic body (slab, blum, 
etc.) occupies a regular domain 

 with surface  that is 
portioned into three disjoint measurable parts 

 such that means ( . 

Let  be the time interval of interest with 

. The body is clamped on  and 
therefore the displacement field vanishes there. We 
denote by  the spaces of second order symmetric 

tensors, while “ ” and  will represent the inner 

product and the Euclidean norm on  or . Let  

denote the unit outer normal on , and everywhere in 

the sequel the index  runs from  
(summation over repeated indices is implied and the 
index that follows a comma represents the partial 
derivative with respect to the corresponding 
component of the independent variable). 

We also use the following notation and physical 
nomenclatures: 

 ;  

 

 ;   ; 

    for    ; 

 time variable; 

  spatial variable; 
u :  → ℝd displacement vectorial field; 

 velocity and 
inertial vectorial fields; 

 stress tensor field (second order 
Piola –Kirchhoff) ; 

) strain tensor field 

(linearized tensor Green-St. Venant); 
  temperature scalar field; 

The aim of this paper is to study a 
thermodynamic contact problem for elastic-
viscoplastic materials with a constitutive law of the 
form (2.1), where and  are nonlinear 
operators whitch will be described below, and 

 represents the thermal expansion tensor. 
Here and below, in order to simplify the 

notation, we usually do not indicate explicitly the 
dependence of the functions on the variables  

(on the time ). Examples of 
constitutive laws of the form (2.1) can be constructed 
by using thermal aspects and rheological arguments, 
see e.g. [10], [8], [14], [7]. 

 
 

 
(2.1)

It follows from (2.1) that, at each time moment , 

the stress tensor  is split into two parts, 
 where, 

 , 
is the purely viscous part, and                        

(2.2) 
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is the rate-type elastic-viscoplastic part. 

(2.3)  

 
    When  the constitutive law 
(2.1) reduces to the Kelvin-Voigt viscoelastic 
behaviour of the materials, 

   ,       (2.4) 
 
    We turn to describe the frictional contact 
conditions. Since the linear unilateral contact at high 
temperature between deformable body  (product of 
the cast)  and the rigid obstacle (walls of the mold, or 
traction-support rolls, respectively) is lubricated all 
trough of the solidification process, we assume that 
the normal stress   on the contact 

surface  can be satisfies through the  
following semilinear relation (see [5], [7]) , 

   ,    on     (2.5) 
 
The normal damped response function  is 

prescribed and satisfies  for , 
since then there is no contact. As an example, we may 
consider (see [10], [7]) 

   ,        (2.6) 
where   represents a deformability positive 

coefficient and  . 
    Also, we consider the following associated friction 
law, 

 ,      on    . (2.7)
    As an example, we may consider the following 
form of tangential damped response function  , 

 ,          (2.8)
where  is a frictional coefficient and the tangential 

shear stresses  is proportional to the tangential 

velocity  (the setting where the contact surface is 
lubricated with a thin layer of a newtonian fluid). 
    Both  and  are friction-contact constitutive 
functions whose properties will be described below. 
    Finally, the evolution of the temperature field is 
governed by the heat transfer equation (see [6], [8], 
[9]), 

 , in   (2.9)
where, 

 is thermal conductivity tensor   

 is thermal expansion tensor; 

 represent the density of volume heat sources. 
In order to simplify the description of the problem, 

a homogeneous condition for the temperature field is 
considered on , 

  ,   on      (2.10)
 
     It is straightforward to extend the results shown in 
this paper to more general cases. 

Also, we assume the associated temperature 
boundary condition is described on  , 

 ,  on    (2.11)
where  is the reference temperature of the obstacle, 

and  is the heat excange coefficient between the 
body and the rigid foundation. 

Thus, the classic thermo-mechanical problem 
corresponding to the thermo-cvasistatic contact of an 
elastic-viscoplastic body with a rigid foundation, 
involving the friction and the heat conduction, can be 
written as follows: 
 
    Problem (P): Find, 

a displacement field  u :  → ℝd , 

a stress tensor field      and, 

a temperature field  such that, 

    

  

 

(2.12)

   ,     (2.13)
 ,  (2.14)

  ,           on    (2.15)
 ,          on   (2.16)
  ,                   on   (2.17)

  
    on   (2.18)

 , on    (2.19)
 ;  ;  (2.20)

 
Here,  and  represent the initial 

displacement and the initial temperature, respectively. 
Also,  is the initial velocity of displacement. A 

volume force of density  acts in  and a surface 

traction of density  acts on . 
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In order to obtain the variational formulation of 
Problem (P), let us introduce additional notation and 
assumptions on the problem data, ; 

 ; �
     

; 
. 

Here,  and  are the 
Hooke deformation and divergente operators, 
respectively. 
   The real Hilbert spaces  are 
endowed with the corresponding cannonical inner 
products, 

 
            

      

  
We recall that the following Green’s formula 

holds:  
for a regular function    fixed, 

 = 

 , 

  

(2.21) 

 
 We remember that the elastic-viscoplastic body is 
occupied by the regular domain   with the 

surface  that is a sufficiently regular boundary, 
portionned into three disjoint measurable part, 

 such that . 

Thus, we define the closed subspaces   and  of 

 and , respectively, by: 
 , 

  (2.22)

and  be the convexe set of admisible displacements 
given by, 

 .   (2.23) 
 
Since , Korn’s inequality holds (see 

[9], 1997-pp.291) and, hence, on  we consider the 
inner product given by: 

 (2.24)
and the associated norm, 

 

It follows that  and   are equivalent norms 

on  and therefore  is a real Hilbert space. 

In an analogous way, we can prove that the norm 
 associated to the 

inner product on  given by  

is equivalent to the classical norm on . Hence 

 is a real Hilbert spaces. 
    We also recall (see [18], [4]), that for every real 
Banach spaces  we use the notation   

and    for the space of continuous and 
continuously differentiable function from 

, respectively. 

 and  are real Banach 
spaces with the norms, 

    , 
     
   =   

(2.25) 

 
If    and    are arbitrary, then we 

use the standard notation for the Lebesgue spaces 
 and for the Sobolev spaces 

. While the Banach spaces  is 

 we have, 
     

    , 

                               . 
(2.26) 

 
In the study of the thermo-mechanical problem 

 we assume that the 

viscosity operator , the elasticity operator , the 

viscoplasticity operator  and the contact-friction 

functions  satisfies some regularity conditons 
(see [7], [2], [3] ). 
 
   We assume the following  for the 
given force densities, 
   ;  (2.27)

and that the thermal conductivity and expansion 
tensors are symmetrically bounded tensors satisfying,  
    ;   

  . (2.28)

Finally, we also suppose that the mass density 
satisfies, 
  : ,     (2.29)
and the initial data satisfy, 
   
  . (2.30)
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    Because the inclusion mapping of  into 

 and identifying  with its own dual we 

can write the Gelfand triple .  
Let ,   
    

       = 
      , 

 . 

(2.31)

 
We also consider the contact-functionals, 
    , 
    

   

 

                                            . 

(2.32)

and   defined by, 
    

 , 

                                            . 
(2.33)

 
    We suppose in what follows that  are 
smooth functions satisfying the problem 

 
    We take the dot product of equation (2.12) with 

, for  an arbitrary element of , the 

integrate the result over , and using Green’s formula 
(2.21) we obtain, 

    = 

        
                             , a.e .   

(2.34)

 
    Thus, the variational formulation for thermo-
mechanical problem (P) is obtained. 
Problem (VP): Find, 
a displacement field  , 

a stress field    and, 

a temperature field    such that  for 

a.e.   
   

 

(2.35)

   (2.36)

   +   , 
 

    
             +   
              ,            

(2.37)

  . (2.38)
 

4. Existence and uniqueness of the 
solution 

 
    The main result of this section is the following 
theorem of existence and uniqueness of the weak 
solution in the thermomechanical problem (P). 
Theorem 3.1 
    Under the assumptions , there 

exists a unique solution  of the Problem 

. Moreover, the 
solution satisfies the regularity properties, 

 
, 

 
  
 . 

 
 
(3.1)

 
    The proof of Theorem 3.1 is based on the 

result concerning a fixed point strategy, similar to that 
used in [7], [3], [14]. It is carried out in several steps, 
and the variational problem has decomposed in three 
auxiliary problems meant to determine of the 
displacement field, the stress field and the 
temperature field, respectively. 

 
5. Conclusions 

 
Because of the importance of the continuous 

improvements to the casting processes of the steels, a 
considerable effort has been made in modeling and 
numerical simulations of the tribologycal contacts 
between casted products (slab, bloom, etc) and walls 
of the mould, and as well, between slab and the 
support (traction, soft-reduction) rolls, during the 
secondary cooling. 

In the present paper has been investigated a 
mathematical model for triboprocesses involving the 
coupling thermal and mechanical aspects by specific 
behaviour laws of materials. 

The dynamical contact has been described as the 
effect of a normal and tangential damped response 
conditions.  
The classical as well as a variational formulation of 
the thermodynamical problem are presented.    

- 36 -



FO N D ATĂ
197 6

 

 
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI. 

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE 
N0. 3 – 2011, ISSN 1453 – 083X 

 
 

References 
 

[1]. Amassad A., Kuttler L., Rochdi M., Shillor M. - Quasistatic 
thermo-viscoelastic contact problem with slip dependent friction 
coefficient, Math. Computat. Modelling, No. 36, pp.839-854, 2007 
[2]. Andrews K.T., Kuttler K.L, Shillor M. - On the Dynamic 
behaviour of a Thermo-Viscoplastic Body in Frictional Contact 
with a Rigid Obstacle, European J. Applied Mathematics, vol.8, 
pp.417-436, 1997 
[3]. Ayyad Y., Sofonea M. - Analysis of two Dynamic Frictionless 
Contact Problems for Elastic-Visco-Plastic Materials, EJDE, 
No.55, pp.1-17, 2007 
[4]. Barbu V. - Nonlinear Semigroups and Differential Equations 
in Banach Spaces, Bucharest–Noordhoff, Leyden, 1976 
[5]. Bendrea C. - Evolutionary variational problems and quasi-
variational inequalities in the mathematical modeling of the  
tribological processes concerning continuous casting machine, 
Thesis, Galati, 2008 
[6]. Bendrea C., Munteanu V. - Thermal Analysis of an Elastic-
Viscoplastic Unilateral Contact Problem in the Continuous Casting 
of the Steel, Metalurgia International, Vol XIV (2009), No 5, pp. 72 
[7]. Campo M., Fernandez J.R. - Numerical analysis of a 
quasistatic thermo—Viscoelastic frictional contact problem, 
Comput. Math., No.35, pp.453- 469, 2005 

[8]. Chau O., Fernandez J.R., Han W., Sofonea M. - A 
frictionless contact problem for elastic-viscoplastic materials with 
normal compliance and damage, Comput. Methods Appl. Mech. 
Engrg., 191, pp.5007-5026, 2002 
[9]. Ciarlet P.G., Mathematical Elasticity (vol. I, II), Elsevier, 
Amsterdam – New-York, 1997 
[10]. Fernandez  J.R, Sofonea M., Viano J.M. - A Frictionless 
Contact Problem for Elastic-Viscoplastic Matherials  with Normal 
Compliance: Numerical Analysis and Computational Experiments, 
Comput. Methods Appl. Mech. Engrg., vol. 90, pp.689-719, 2002 
[11]. Han W., Sofonea M. - Quasistatic Contact Problems in 
Viscoelasticity and Viscoplasticiy , AMS , Int. Press, 2001 
[12]. Moitra A.,Thomas B.G. - Applications of a Thermo-
Mechanical Finite Element Method of Steel Shell Behaviour in the 
Continuous Slab Casting Mold, SteelMaking Proceedings, vol.76, 
pp.657-667, 1998 
[13]. Munteanu V., Bendrea C. - A Thermoelastic Unilateral 
Contact Problem with Damage and Wear in Solidification 
Processes Modeling, Metalurgia International, Vol XIV (2009), No 
5, pp. 83 
[14]. Wang H., Li G. et. al. - Mathematical Heat Transfer Model 
Research for the Improvement of Continuous Casting Slab 
Temperature  ISIJ Int. vol.45, No.9, pp.1291-1296, 2005. 

 

- 37 -


