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ABSTRACT 
 

This article aims at presenting the model of the mass loss of a brass sample in 

ultrasonic cavitation field in saline water. The experiments done for data collecting 

was performed in three scenarios. In the first one, the high frequency generator 

worked at three power levels - 80 W, at the second one - at 120 W, and in the third 

one - at 180 W. The Model has been built using the series of the mass loss on 

surface. 
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1. Introduction 
 

Ultrasound cavitation is the process of 

formation, growth, and collapse of vapors bubbles 

inside a liquid traversed by an ultrasonic field [1]. 

High energies appear during this process, resulting in 

vibrations, noise, erosion-corrosion, unpassivation, 

sonoluminescence, emulsification etc. [2-3]. The 

phenomenon is characterized by the liquid 

discontinuity state when the pressure drop happens 

under critical values [4]. The cycle collapse/rebound 

induces a voltage at the cavitation zone boundaries 

[5-7]. 

Due to the practical implications of the negative 

effect of cavitation on the machines and their 

components working in such conditions, the attach 

type on materials with different compositions and the 

mass loss process became a topic of interest for 

scientists [8-14]. For example, Basumatary et al. [8] 

analysed the erosion-corrosion mechanism of ships 

propellers. Petkovsek and Dular [9] observed the 

cavitation erosion and structures. Wharton and Stokes 

investigated the corrosion mechanism of some 

Nickel-Aluminum bronzes, whereas Schüssler and 

Exner [11] studied the mass loss of the same type of 

materials in seawater. Other authors [12-14] modelled 

electrical signals that appeared in the cavitation field 

in different liquids and the mass loss of different 

materials in such conditions. 

The present article is in line with the previous 

research investigating the mass loss of copper-based 

alloys in seawater and modelled the trend of this 

process [13-14]. The novelty consists of proposing an 

RBF model that fits the mass loss of a brass (utilized 

in the shipbuilding industry) in the ultrasound 

cavitation field. 

 

2. Materials and methods 
 

The studied material is a brass, with 57.95% Cu, 

38.45% Zn, and 2.75% Pb. 

The of the seawater composition used for all the 

experiments is the following: salinity: 22.17 g/L 

NaCl, 0.31 g/L SO4
2-, pH = 7, 6.27 meq/L - total 

water hardness, 0.051 mg/L Fe, 0.0033 mg/L Ni. 

The setup utilized for the experiment is shown 

in Fig. 1 [5, 14]. Its main parts are: 

The tank containing the liquid (1); 

- The high-frequency generator, working at 20 

kHz (8) 

- The ceramic transducer (7) that is excited by 

the generator (8); 

- A cooling fan (11) utilized for keeping the 

liquid’s temperature constant. The experiment has 

been performed at 20 oC; 

- The command block (12) used for selecting 

different powers for the generator regime (80 W, 120 

W, or 180 W). 

The samples were kept in saline water under 

cavitation produced by ultrasound for a total of 1320 

minutes (380 minutes at 80 W, 480 minutes at 120 W, 

and 480 minutes at 180 W) and weighted every 20 

minutes. 

Based on the measured mass loss values, the 

variations of the ratios between the absolute mass loss 

(i.e., the difference between the mass at the moment t 

and the mass at the beginning of the experiment) on 

surface have been computed. To test if these values 
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come from the same distribution, the Kruskal-Wallis 

test [15] was performed at the significance level of 

0.05. 

The last step was to put together the three data 

series and determine a Radial Basis Function (RBF) 

model of the mass loss per surface. 

 

 
 

Fig. 1. The experimental setup 

 

Artificial Neural Networks (ANNs) were firstly 

introduced for modelling the human brain structure 

and have been developed to understand the brain 

functioning (direction 1) and to the concept 

adaptation for using the computational capabilities in 

solving practical problems (direction 2) [16]. 

Nowadays, ANNs are widely used for modelling 

data from various domains where classical modelling 

methods do not provide satisfactory results, data 

series present high variability, or do not satisfy the 

hypotheses necessary to apply classical methods. 

ANNs have proved to have good approximation 

capabilities [17], thus they are employed to find 

answers to various classification, regression, and 

forecasting problems [18-24]. 

An ANNs is built of interconnected layers 

formed by neurons connected each to the others. 

There is an input layer, one or many hidden layers, 

and an output layer. Two classes of ANNs are known 

recurrent and feed-forward neural networks [25]. 

RBF networks (RBFNs) belong to the last class and 

have only a hidden layer. 

 

 
 

Fig. 2. RBF neural network [26] 
 

ANNs are formed by artificial neurons that 

process the information that enters the network 

applying an activation function. The result is then 

transferred to the next layer. 
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The nodes in RBF network’s hidden layer 

transform the input variables, using a radial basis 

function. The most used is the Gaussian function 

since no significant improvement of the modelling 

results was reported when employing other functions. 

The last layer acts as a summation unit. 

The typical structure of an RBF neural network 

can be seen in Fig. 2. 

The output of a hidden unit is  

in case of a Gaussian kernel function, where 

 is the Euclidian distance between x (the 

input vector) and the RBF’s centroid, and  is the 

kernel width. 

The hidden layer’s output,  are given by: 

 

, 

 

where  are the weights of the links of the hidden 

layer j and the output layer, i. 

At the network initialization, the centroid 

positions are chosen, whereas the weights and widths 

result from the network training (which is done by 

back-propagation). 

In this case, the k-means clustering is employed 

to determine the centroids. An evolutionary algorithm 

[27] is utilized for selecting the optimum centroids 

and spread for each neuron and the moment when 

enough neurons are added to the network (based on 

the Leave-one-out procedure). The weights 

optimization is realized by ridge regression, and for 

minimizing the generalized cross-validation (GCV) 

error, the algorithm proposed by Orr [28] is utilized. 

For details on this kind of network, the readers 

may see [29-30]. 

The following settings have been used in our 

study: the maximum number of neurons -100; 

population size – 200, the maximum number of 

generations – 20, maximum generations flat – 5, 

absolute tolerance – 10E-6, minimum radius – 0.01, 

maximum radius – 400. The optimal regularization 

Lambda parameter [28] varies between 0.001, and 10.  

To validate the modeling results, the proportion 

of variance explained by model (R2), the mean 

absolute error (MAE), the mean standard error 

(MSE), mean absolute percentage error (MAPE), the 

correlation between the actual and predicted values 

(rap) were employed. 

 

3. Results and discussion 
 

Let us denote by: 

- t - the time,  

- mt - the sample mass at the moment t, 

- R2 - the determination coefficient,  

- s - the standard deviation of the residuals in the 

linear models, 

- S - the sample’s surface. 

 

 
 

Fig. 3. The brass mass variation: (a) at 80 W, (b) at 120 W, (c) at 180 W, (d) during the entire 

experiment. The continuous line represents the recorded data and the dotted ones the fitted trend 
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Figures 3 (a)-(c) show the evolution of the 

sample mass in time and the fitted trends, which are 

second-degree polynomials. Figure 3 (d) presents the 

overall evolution of the sample’s mass in time.  In all 

cases, R2 is above 0.95, and the residual standard 

deviations are lower than 0.0001, emphasizing a good 

data fit. 

The evolution of the absolute mass loss per 

surface at all the power stages is represented in Fig. 4, 

where the vertical lines delimitate the stages (I-80 W, 

II-120 W, III-180 W). 

The Kruskal - Wallis did not reject the null 

hypotheses therefore, we built the RBF network. 

Two-third of the data has been used for training, and 

for the test, the last third. The parameters found after 

running the algorithm are: 

- Number of neurons = 4 

- Minimum radius = 0.01 

- Maximum radius = 5.88084 

- Minimum Lambda = 0.83554 

- Maximum Lambda = 5.66617 

- Regularization Lambda for final weights = 

2.4643e-003 after 7 iterations. 

The goodness of fit indicators is presented in 

Table 1, showing an excellent fit of the data series. 

The chart of actual versus predicted values confirms 

this assertion (Fig. 5). 

 

 
 

Fig. 4. The absolute mass variation per surface. The vertical lines delimitate the stages (I-80 W, II-

120 W, III-180 W) 
 

Table 1. Goodness of fit indicators 
 

 Training Test 

R2(%) 99.463 94.898 

MSE  0.0047 0.0125 

MAE 0.0582 0.0943 

MAPE 9.1388 2.3057 

 
0.9973 0.9799 

 

 
 

Fig. 5. The predicted values versus the actual target values 
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4. Conclusion 

 

This article presented the results of mass loss of 

a brass in ultrasound cavitation field in seawater. The 

main result is modeling the mass variation per surface 

in time. The estimation of the RBF model built has 

been done using five indicators. On both training and 

test set, R2, and  are very close to 1, showing a 

good fit of the initial series. MSE and MAPE are 

smaller on the training set, meaning that the algorithm 

performs the best on this set. Point of view of MAPE, 

the best performance is that obtained on the test set. 

Overall, the model describes very well the 

process evolution. 
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