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ABSTRACT 
 

Automated error detection in 3D printing is an important challenge that 

impacts not only the quality of the final parts but also operational efficiency, 

helping to minimize wasted time and material. Certain types of errors can even 

result in printer malfunctions. A widely used solution for monitoring the printing 

process involves employing a webcam to observe the process in real time, either 

alerting the operator or halting the print if an issue is detected. In this paper, a 

computer vision algorithm able to detect specific errors is proposed. 
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1. Introduction 
 

Unmanned error detection in 3D printing is a 

critical issue that affects not only the final quality of 

produced parts but also operational efficiency by 

reducing wasted time and material consumption. In 

many applications, printing errors can be caused by 

various factors such as: nozzle clogging [1-3], first-

layer adhesion issues [4-5], irregular filament 

extrusion [6-7], positioning errors [8-9], or even 

mechanical failures of the printer [10]. 

Introducing a webcam into the printing process 

for real-time monitoring and error detection can 

significantly improve product quality and reduce 

waste. 

3D printing errors can be classified into various 

categories: extrusion problems, nozzle clogging, 

delamination, layer shifting, print bed adhesion 

issues. 

One of the most common solutions for 

monitoring printing is the use of a webcam that tracks 

the process in real time and alerts the operator or halts 

the print in case an error is detected [11, 12]. 

Video monitoring of the 3D printing process is 

an increasingly popular solution due to its simplicity 

and efficiency. Webcams are relatively inexpensive 

and can be easily integrated with 3D printers, 

providing a clear view of the process. These cameras 

can function in two main ways: active monitoring and 

image processing. 

Active monitoring with automatic error 

detection allows the user to be informed by a system 

as a program using image processing algorithms or 

machine learning techniques to automatically analyse 

the images captured by the webcam and detect errors 

in real-time. 

Image processing is a key technology for 

automatic error detection in 3D printing using a 

webcam [13-16]. By analysing the images captured 

during printing, an algorithm can compare the current 

progress with a reference model or a set of predefined 

conditions to identify deviations or anomalies. 

There are two major approaches to image 

processing for error detection: featured-based analysis 

and machine learning algorithms. 

In feature-based analysis, the approach focuses 

on detecting specific visual characteristics, such as 

layer shape, texture, thickness, or colour. If a feature 

does not match the expected one, the algorithm can 

detect an error. 

A promising area for error detection in 3D 

printing is the use of machine learning algorithms 

[17-22]. These can be trained to recognize specific 

patterns of errors and to make predictions based on 

images captured by the webcam. 

Several types of algorithms can be used for this 

purpose, such as convolutional neural networks 

(CNN), which are particularly effective in image 

analysis. Convolutional Neural Networks (CNN) are 

a class of deep learning algorithms that have proven 

to be extremely efficient in image recognition and 

visual analysis [23-28]. 

A CNN model can be trained to recognize 

different types of printing errors, such as nozzle 
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clogging, layer shifting, or uneven filament extrusion, 

by being exposed to a dataset of appropriately 

labelled images. The process of training a CNN 

model begins with collecting a large set of images 

from 3D prints. These images are labelled to indicate 

the presence or absence of certain types of errors. The 

model is then trained to recognize patterns associated 

with these errors. After training, the model can 

analyse new images in real time and automatically 

detect errors. Once a convolutional neural network 

model has been trained and deployed, it can be 

integrated with the webcam to monitor the 3D 

printing process in real-time. The algorithm analyses 

each frame and detects anomalies that could signal 

the appearance of an error. 

There are already several examples of projects 

and commercial solutions that use webcams and 

image processing technologies to detect errors in 3D 

printing. One of the most well-known examples is 

OctoPrint [29], an open-source platform that allows 

remote monitoring and control of 3D printers. 

OctoPrint can be integrated with webcams to provide 

real-time visual surveillance, and in some cases, it can 

be configured to stop printing if major errors such as 

layer shifting or extrusion problems are detected. 

Another example is The Spaghetti Detective, 

[30] a plugin for OctoPrint that uses machine learning 

to detect printing errors. The term "Spaghetti" refers 

to a common type of error in 3D printing when the 

filament begins to tangle and form an uncontrolled 

mass resembling spaghetti. Spaghetti Detective uses a 

convolutional neural network [31] to analyse images 

captured by the webcam and detect such errors. If the 

algorithm detects an error, it can automatically halt 

the print and send an alert to the user. 

In the future, as image processing technologies 

and machine learning algorithms become more 

advanced, we can expect an increase in the efficiency 

and accuracy of these systems. Additionally, it is 

likely that we will see their integration into more 

platforms and commercial solutions, making 

automatic error detection a standard feature of 3D 

printers. 

Although there are some challenges related to 

image quality and the complexity of part geometry, 

these can be addressed by using higher-quality 

cameras and developing more advanced algorithms. 

In conclusion, implementing these webcam-based 

error detection systems has the potential to 

revolutionize the way 3D printing is performed, 

contributing to a more efficient, cost-effective, and 

reliable process. 

This study aims to explore the ways in which a 

webcam can be used for error detection, analyse 

relevant image processing and machine learning 

technologies, and provide an overview of the most 

effective methods for implementing this technology 

in 3D printing. While this technology has brought 

many advantages, including design flexibility and the 

ability to produce complex parts, 3D printing often 

suffers from errors that can compromise the quality of 

the final product. 

 

2. Experimental procedure 
 

In Figure 1 it is shown the “spaghetti like” 

defect on the experimental setup. A webcam is placed 

on 3D printed in such a way to have the view towards 

the printer bad. 

 

 
 

Fig. 1. View from the webcam to be recognized 
 

Although error detection with webcams and 

image processing algorithms is a promising solution, 

it is not without challenges. One of the main 

limitations is image quality. A low-quality webcam 

may not be able to capture fine details, and under 

poor or variable lighting conditions, the accuracy of 

error detection may decrease significantly. 

Another challenge is the complexity of printed 

models. Complex parts with detailed geometries and 

thin layers may be difficult for image processing 

algorithms to analyse. In some cases, small 

differences between the correct part and an error may 

be hard to detect, especially if the error occurs in less 

visible areas of the part (Figure 2). 

An important aspect of using webcams for error 

detection is their integration with automated control 

systems for 3D printers. In this way, detecting an 

error can trigger automated actions such as stopping 

the print, adjusting printing parameters, or sending an 

alert to the user. The webcam constantly captures 

images, the image processing algorithm analyses 

them in real-time, and if an error is detected, the 3D 

printer receives a signal to stop the process. This type 
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of automation not only improves the quality of the 

final products but also contributes to the optimization 

of time and resources. Using a webcam for error 

detection in 3D printing is an efficient and accessible 

solution for improving the quality and reliability of 

the additive manufacturing process. By utilizing 

image processing technologies and machine learning 

algorithms, this system can detect anomalies in real-

time, preventing major defects and reducing material 

waste. 

 

 
 

Fig. 2.” Spagetti” errors pose variation 
 

In order to detect such defects, we want to create 

a custom architecture of DeepLabV3, by changing the 

number of Dilated Convolutions and the 

parameterization of the Atrous Spatial Pyramid 

Pooling (ASPP) module to suit our specific needs. 

Regarding the dilated convolutions we will change 

the dilation rates within some convolutional layers in 

the ResNet backbone to increase/decrease the 

receptive field. Also related to the ASPP (Atrous 

Spatial Pyramid Pooling) parameter, we will adjust 

the dilation rates and the number of convolutional 

modules in ASPP, to experiment with various levels 

of detail in capturing the spatial context. 

Atrous Spatial Pyramid Pooling (ASPP) is a key 

component in convolutional neural network 

architectures used for semantic segmentation, as seen 

in DeepLab. ASPP is extremely useful for capturing 

spatial context at multiple scales from an image, 

allowing the model to understand both local details 

and global information. Using a customized ASPP 

brings flexibility depending on the specific 

application (in your case, detecting filaments in 

images). 

 

3. Results and discussions 

 

Semantic segmentation is the task of assigning a 

label to every pixel in an image to identify the objects 

present, and ASPP plays a crucial role in this process 

because capturing multi-scale context is of very high 

importance: Each dilated convolution in ASPP 

captures information from regions of different sizes in 

the image. A small dilation rate captures local details 

(such as edges and contours), while a larger dilation 

rate captures information from a broader area of the 

image, which is important for identifying the overall 

context. Minimizing loss of resolution is a paramount 

objective when dealing with ASPP as ASPP helps 

retain image details without losing resolution through 

excessive pooling, which is essential for capturing 

small or thin objects (such as the filaments in 3D 

printing processes). Objects in real-world images can 

vary in size and shape, and ASPP enhances the 

model's ability to detect these variations. We 

developed an architecture that allows a customized 

ASPP allows for adjusting the dilation rate and the 

number of convolutional blocks to better fit the 

characteristics of the data. 

In filament detection, a precise segmentation of 

very thin and irregular objects is needed, and ASPP 

can be configured to give more attention to fine 

details by using smaller dilation rates in combination 

with larger rates to capture the overall context. By 

using smaller dilation rates for convolutional layers 

dedicated to local details can avoid losing critical 

details such as the edges of filaments or fine 

structures that may be essential for detecting them. 

ASPP combines global and local information, 

which is essential for detecting filaments or small 

objects within the broader context of the image. This 

improves the model's accuracy in identifying objects 

that might be difficult to detect without considering 

the overall scene context. In the customized 

architecture we discussed, ASPP was configured with 

dilation rates of 6, 12, 18, and 24. These values are 

parameterized to allow for efficient multi-scale 

feature extraction. Small dilation (6) allows capturing 

local fine details, such as contours and small textures. 

In filament detection, this layer would be responsible 

for precisely identifying the filaments and other thin 

structures in the image. Medium dilation (12, 18) is 

ideal for capturing structures at an intermediate scale, 

such as filaments in the broader context of the printed 

object. These dilation rates can capture filaments that 

are spaced apart or span large areas of the image. 

Large dilation (24) helps capture information from 

very wide regions of the image and is useful for 

understanding the overall context. This layer is 

important for linking locally detected filaments to the 

general structure of the printed object. 
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For dilation rate of 6 we obtain 76 % detection 

rate, for 12 92 % detection rate, for 18 detection rate 

was 95 % while using 24 dilation rate we obtain only 

88 %. The application was developed in Pytorch and 

it recognized the printing error as shown in Figure 3. 

 

 
 

Fig. 3. Detection of the error 
 

A well-configured ASPP with variable dilation 

rates can be crucial for improving performance in 

applications where detecting small and fine details is 

critical. Detecting filaments in images, especially in 

the context of 3D printing images, is a challenging 

task because filaments have irregular shapes and are 

often very thin. Smaller dilation rates in ASPP help in 

the precise segmentation of filaments that are very 

thin and could be lost in other segmentation 

approaches that do not use dilated convolutions. 

 

4. Conclusions 

 

Top customized ASPP is a powerful solution for 

improving the performance of semantic segmentation 

networks when detecting filaments or other thin and 

irregular formations. 

By using variable dilations and capturing multi-

scale context, ASPP allows neural networks to be 

efficient in capturing fine details and the overall 

context of the image. 

In filament detection for processes such as 3D 

printing, a customized ASPP can provide a robust 

solution for accurately segmenting these thin objects 

and other complex structures, maintaining both local 

details and global context. 

Adjusting the dilations and the number of ASPP 

blocks can be done to achieve the perfect balance 

between accuracy and performance, depending on the 

specific data and purpose of the application. 

ASPP extends the receptive field without losing 

the fine details of the filaments. This allows the 

network to capture both the local filaments and the 

general distribution of filaments across the entire 

scene. 

By creating convolutional layers at multiple 

scales, ASPP helps avoid over fitting on local details. 

Instead, capturing context at various scales allows the 

network to detect filaments without over fitting to 

noise present in the visual data. 

Modifying the dilation rate in a customized 

ASPP can affect the model's ability to detect 

filaments, particularly depending on their geometry 

and distribution. ASPP improves the detection of 

these varied shapes without compromising 

segmentation precision. 
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