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ABSTRACT 
 

Honeycomb composites are widely used in blast structure under explosive 

loading because of mechanical properties. The simulation of high-pressure 

explosion is time consuming in order to simulate an important number of scenarios. 

New deep learning neural models might approximate results with low 

computational resources outputting the result very fast. The purpose of this study is 

to propose using deep learning model using a relative low amount of training fata 

to approximate deformation in honeycomb structures subjected to a blast load. This 

study employed variation of hexagonal honeycomb dimensions to determine the 

deformation using deep learning model. 
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1. Introduction 
 

Honeycomb composites are widely used in 

aerospace, automotive, and civil engineering 

industries due to their remarkable mechanical 

properties, such as high strength-to-weight ratio, 

stiffness, and energy absorption. Understanding the 

deformation behavior of honeycomb structures under 

different loading conditions is critical for optimizing 

designs and ensuring structural integrity [1-3]. 

Traditional methods, such as Finite Element Analysis 

(FEA), are widely used for simulating the mechanical 

response of these structures. However, FEA can be 

computationally expensive and time-consuming, 

especially when dealing with complex geometries or 

large-scale simulations such in case of blast. 

Aluminium honeycomb structures are highly 

effective for attenuating explosion effects due to their 

excellent energy absorption properties, low density, 

and high strength-to-weight ratio. 

Recent advancements in artificial intelligence 

(AI) and machine learning (ML), particularly deep 

learning (DL), have shown great potential in 

providing faster and more efficient predictions for 

various engineering applications [4-6]. Deep learning 

models, once trained on sufficient data, can offer 

near-instant predictions of mechanical behavior, 

bypassing the need for extensive simulation or 

experimental testing [7-9]. This study aims to explore 

how a deep learning algorithm can be trained to 

predict the deformation of honeycomb composites 

under different loading conditions using a reduced 

amount of training data. Traditionally, deformation 

analysis of honeycomb composites is performed 

using FEA, which involves solving complex 

differential equations to simulate the mechanical 

response of materials under loading conditions. 

However, FEA simulations can be resource-intensive 

and time-consuming, particularly for large-scale or 

real-time applications [10, 11]. 

Deep learning offers an alternative approach to 

predict deformation behavior based on prior 

knowledge (i.e., training data). Once trained, deep 

learning models can provide near-instant predictions 

of deformation for various configurations of 

honeycomb composites under different loading 

conditions [12-14]. Honeycomb structures can be 

represented as a graph, where the nodes correspond to 

the joints, and the edges represent the walls of the 

honeycomb. Graph Neural Networks (GNNs) are 

particularly suitable for this type of data, as they can 

effectively capture the relationships between the 

nodes and edges, allowing the model to predict 

deformation based on the underlying structure. If the 

deformation prediction is formulated as a 

classification task (e.g., predicting failure or non-
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failure), precision can be used to evaluate the model's 

ability to correctly classify the outcomes. 

Deep learning models, once trained, can provide 

real-time predictions [15]. Using deep learning 

provide cost-effectiveness as it reduces the need for 

repeated simulations or experiments. Deep learning 

models can generalize to unseen data, allowing for 

predictions on new honeycomb configurations or 

loading scenarios. In this paper we aim to propose a 

deep neural architecture to predict deformation of 

honeycomb structure as effect of explosion using a 

low amount of training data. 

 

2. Experimental procedure 
 

The first step in training a deep learning model 

is to collect or generate a sufficient amount of 

labelled data. In this case, the data consists of various 

configurations of honeycomb structures, along with 

their corresponding deformation results under 

different loading conditions. 

Finite Element Analysis (FEA) allows us to 

simulate different honeycomb configurations varying 

cell size and wall thickness under a range of loading 

pressure conditions as effect of explosion. For each 

simulation, the deformation results stress and 

displacement fields are stored. 

Experimental data is further used to validate and 

augment the simulation data. Experiments involve 

loading honeycomb samples and measuring their 

deformation one by one. 

Varying honeycomb cell sizes and wall 

thickness was performed within 10% variation. We 

used 20 different simulations for the following 

scenario: Far-Field Explosion at a distance far 5 

meters, using a pressure 14000 psi and the material is 

Aluminium 1060. 

The raw data generated from FEA simulations 

or experiments must be pre-processed before feeding 

it into the deep learning model. Normalizing input 

data (material properties, geometry parameters) and 

output data (stress, strain) ensures that all features are 

on a similar scale, which improves model 

performance. 

For large-scale simulation data, dimensionality 

reduction techniques like Principal Component 

Analysis (PCA) can be applied to reduce the number 

of features while retaining the essential information. 

Selecting an appropriate deep learning 

architecture is crucial for capturing the complex 

relationships between input parameters (geometry, 

material properties, loading conditions) and output 

(deformation). Several model architectures can be 

considered. 

CNNs are well-suited for tasks involving spatial 

data, such as images or maps. In the case of 

deformation prediction, CNNs can be used to capture 

the spatial distribution of strain, stress, or 

displacement fields. This approach is particularly 

effective when using 2D or 3D simulation data as 

input. 

We used the input data consists of scalar values 

(material properties, cell size, loading conditions), a 

fully connected neural network (FCNN). In this case, 

the model learns the relationships between these input 

features and the corresponding deformation 

responses. 

Once the data is prepared and the model 

architecture is selected, the next step is to train the 

deep learning model. 

The loss function quantifies the difference 

between the predicted deformation and the actual 

deformation (from simulations or experiments). 

Mean Squared Error (MSE) measures the 

average squared difference between predicted and 

actual values. 

 

 
 

Fig. 1. Deformation in honeycomb 
 

The optimizer is responsible for updating the 

model parameters to minimize the loss function 

during training. We used Adam optimizer as is a 

popular optimizer that adapts the learning rate during 

training, often leading to faster convergence. 

Regularization is essential to prevent over 

fitting, especially when the dataset is limited. 

Randomly "drops" neurons during training to prevent 

the model from becoming overly reliant on specific 

neurons. Adds a penalty to the loss function based on 

the magnitude of the model's weights, encouraging 

smaller weights. We used a network architecture 

consisting of 10 hidden layers dropout layer after 

hidden layer 2 and 4 output neurons. 

To further enhance the model's ability to 

generalize, data augmentation techniques can be used 

to artificially expand the training set. For example, 

random noise can be added to the input features, or 

the honeycomb geometry can be slightly perturbed in 
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this research. From the 50 samples of training 10 

were obtained using mean estimates of results. 

 

3. Results and discussions 

 

Once the model is trained, it must be evaluated 

to ensure that it generalizes well to unseen data. This 

is done by splitting the data into training, validation, 

and test sets: As training set, we used for fitting the 

model during training 50 simulation performed in 

Inventor Nastran with hexagon shape varying 

dimension to 10% (Fig. 1, Fig. 2). The dimension of 

the part used for simulation is 400 m X 500 mm. The 

hexagon side dimension is varying starting from 15 

mm up to 16.5 mm and we used 6 rows. 

Root Mean Squared Error (RMSE) Measure the 

magnitude of the errors in the predicted deformations. 

Hyperparameters, such as the learning rate, 

batch size, number of layers, and number of neurons 

per layer, play a critical role in the performance of the 

model. Hyperparameter tuning can be performed 

using techniques like grid search or random search.  

Once the model has been trained, evaluated, and 

optimized, it can be deployed for real-time prediction 

of deformation in honeycomb composites. The model 

can be used in various applications, such as: 

The model can quickly evaluate different 

honeycomb configurations to find the optimal design 

based on the desired mechanical performance. While 

the FEA simulation needs for one single simulation 

approximate 10 hours on a processor i913700 Kf and 

128 Gb RAM, the deep learning algorithm needs only 

30 seconds to predict the result. The prediction rate is 

82% for 10 testing data. Though the prediction rate is 

not as high as we would expect, the low amount of 

training data mean translates a reduced prediction 

rate. However, the experiments show that the use of 

neural model can lead to good result. More trained 

data will translate in a higher prediction rate. 

 

 
 

Fig. 2. Deformation and stress distribution in structure 

 

4. Conclusions 
 

In applications where honeycomb composites 

are subjected to varying loads the model can be used 

to predict deformation in real-time and provide early 

warnings of potential failures. 

The model can assist in selecting the appropriate 

materials for honeycomb structures based on the 

predicted deformation under different loading 

conditions. 

Deep neural networks (DNNs) demonstrate high 

accuracy in predicting deformation patterns in 

honeycomb structures under various loading 

conditions, showing significant promise in real-time 

structural monitoring and failure prevention. 

Compared to conventional finite element 

analysis (FEA) methods, DNNs reduce computational 

time without compromising prediction accuracy, 

making them suitable for applications requiring rapid 

response, such as aerospace and defence. 

DNN models excel in capturing complex, 

nonlinear deformation behaviours, especially under 

dynamic or impact loading conditions, where 

traditional linear models may struggle. 

Deep learning models trained with diverse 

datasets (including different materials, cell 
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geometries, and load types) show robust performance 

across variable conditions, indicating versatility in 

predicting deformations for a wide range of 

honeycomb configurations. 

Combining DNNs with physics-based methods, 

like FEA, enhances the model’s interpretability and 

accuracy, making hybrid models a valuable approach 

for understanding deformation mechanisms and for 

validating deep learning predictions. 
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