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ABSTRACT 
 

The main goal of this study is to create an innovative approach to retinal 

vessel detection using the gradient pyramid fusion algorithm to improve edge 

continuity and measurement precision in retinal images. Traditional methods, like 

wavelet transform and guided filter, face challenges with background noise, 

artifacts and uneven illumination, which can distort vessel measurement. The 

proposed fusion method manages to overcome these limitations by combining the 

strengths of traditional techniques, which creates more continuous edges through 

gradient fusion across multiple scales, thus managing to also limit the number of 

image artifacts. We used images from the DRIVE database, to evaluate the fusion 

algorithm’s precision, with results showing improved vascular tree detection and 

continuous edges, a reduction in the number of artifacts and improved measurement 

accuracy. The results show that this image fusion method improves the retinal 

image analysis, thus helping in early disease diagnosis. 

 
KEYWORDS: wavelet transform, gradient pyramid fusion, edge detection, 

image fusion, guided filter 

 

1. Introduction 
 

Retinal image analysis is playing an important 

role in early detection and diagnosis of ocular and 

systemic diseases, especially those concerning the 

vascular system, such as diabetic retinopathy and 

hypertension. Vascular abnormalities, such as those 

generated by diabetic retinopathy, often require 

accurate measurement, however, asymmetry in 

vessels and complex backgrounds are usually some of 

the motives contributing to the lack of precision in 

vessel diameter measurements [1-3]. Most algorithms 

today detect blood vessels using techniques related to 

segmentation, probing or edge detection. These are 

realized by using various gradient masks for edge 

detection. Furthermore, morphological operations are 

carried out to obtain accurate edge maps especially 

for noise affected images. Thresholding is a 

fundamental method of image segmentation, which 

separates foreground (in our case, blood vessels) from 

background [4-9]. Moreover, advanced threshold 

techniques continue to enhance information coming 

from localized areas of an image. Probing 

methodology uses algorithms in which a vessel path 

is tracked while detecting edges in a real time 

manner. However, these bear serious limitations due 

to background noise and uneven illumination, thereby 

making quantitative measurements difficult [10-14]. 

In this paper the gradient pyramid image fusion 

algorithm represents a new method used to overcome 

such limitations by merging the merits of different 

traditional filters. [10] Using a merged representation 

of gradient pyramids, the technique proposed here 

attempts to generate sharper and more continuous 

edges without affecting any important useful 

information in the retinal images. The performance of 

the GPF algorithm for producing high-quality 

vascular edge maps and accurate measurement values 

of retinal vessel diameter is assessed in this paper. 

[14-16] 

The structure of the paper is organised in four 

sections, the firs one is introduction. Section 2 covers 

materials and methods, while Sections 3 present 

experimental results and discussion. Conclusions are 

provided in Section 5. 
 

2. Materials and methods 

2.1. Database and the Algorithm 
 

A total of 40 retinal images from the DRIVE 

digital retinal image database were analysed [17]. 
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This dataset consists of 20 randomly selected images 

and 20 manually segmented images, which serve as 

ground truth. Figure 1 illustrates the flowchart of the 

proposed method. 

 

 
 

Fig. 1. Flow chart of the proposed method 
 

2.2. Guided Filter (GF) 

 

It is an image processing technique that has 

wide applications in edge-preserving, smoothing, 

noise reduction, and detail enhancement. It differs 

from other basic averaging filters, which blur edges 

across the board, in that it smooths out with the 

preservation of edges. The main steps of the guided 

filter are: computation of the mean and variance of 

the guidance image, calculate the correlation between 

the guidance image and the input image, use these 

values in generating filtering coefficients and apply 

these coefficients to produce the final filtered image. 

The algorithm is based on a set of equations [18-20]. 

Local means of the input image and guidance image 

are computed using a window of size determined by 

the radius: 

 

,  

 

where number of pixels in the local 

window. 

 

In the next step, we calculate the variance of the 

guidance image locally, covariance between the 

guidance and the input image as: 

 

 

 

 

 

The filtering coefficients 𝑎 and 𝑏 are then 

calculated, with the former controlling the detail 

adaptation rate: 

 

 

 

 

where ε represents the regularization constant to 

control the edge preservation level. Furthermore, the 

final filtered image is obtained by the local weighted 

average of coefficients: 

 

 

 

This filter finds frequent application in image 

denoising and detail amplification because of the 

great efficiency and versatility in maintaining 

important structural features of images [18]. 

 

2.3. Wavelet Transform-Based Algorithm 

(WT) 

 

The Wavelet Transform-Based Enhancement 

algorithm is a sophisticated method in image 

processing aimed at reducing noise and bringing out 

finer details. It works by breaking down an image 

into frequency components through the Discrete 
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Wavelet Transform (DWT). This decomposition 

allows the separation of low-frequency components 

(representing the main structure of the image) from 

high-frequency components (containing fine details 

and noise). By adjusting each component selectively, 

this approach balances noise reduction with detail 

enhancement [21]. 

The algorithm involves four primary stages: 

wavelet decomposition, noise reduction, detail 

enhancement, and wavelet reconstruction, each 

governed by specific mathematical operations: 

• Wavelet Decomposition: The image is split 

into multiple levels, yielding a vector of wavelet 

coefficients (C) and a structure (S) that defines each 

level’s size. This is represented by the equation: 

 

 
 

• Noise Reduction: Using a technique called soft 

thresholding, noise is reduced by setting small, noisy 

details to zero, preserving significant parts. This 

operation is expressed as: 

 

 
 

• Detail Enhancement: Here, the remaining 

details are boosted by multiplying specific wavelet 

coefficients by a “detail factor,” enhancing edges and 

finer structures. This is shown with: 

 

 
 

• Wavelet Reconstruction: Finally, all modified 

coefficients are combined to reconstruct an enhanced 

image using the inverse wavelet transform: 

 

 
 

This method improves image quality by 

reducing unwanted noise and emphasizing edges, 

yielding a cleaner, sharper result [22]. 

 

2.4. Gradient Pyramid fusion algorithm 

(GPF) 

 

The Gradient Pyramid fusion algorithm 

combines multiple images by capturing and merging 

key details across varying scales. It starts by 

decomposing each input image into a pyramid of 

gradient images, which represents intensity changes 

at multiple scales. Each pyramid level highlights 

gradients that reveal shifts in intensity, isolating 

critical features in each image. 

The algorithm then proceeds with the fusion 

stage, where it creates gradient pyramids for each 

input image and selects the maximum gradient at 

every level. This selection effectively merges the 

most prominent details from both images into a 

unified gradient pyramid. The fused pyramid is then 

used to reconstruct a single, cohesive image that 

retains essential details from the original inputs. 

The process involves several key steps: 

constructing the gradient pyramid by calculating 

gradient magnitudes using Sobel filters, down 

sampling each level with pyramid (using 'reduce') for 

each RGB channel, and expanding each pyramid level 

in the reconstruction stage to add it to the level below. 

This process is repeated independently for each 

colour channel to produce a final, full-colour RGB 

image. Finally, the algorithm saves and displays the 

original images, the gradient pyramids, and the fused 

image, providing a clear view of how features from 

the input images combine into a refined, enhanced 

result [23-25]. 

At each level  in the pyramid, the fused 

gradient  is obtained by selecting the maximum 

gradient values from each pixel of the two input 

images, and : 

 

(x,y)=max( (x,y), (x,y)) 

 

where is the gradient of image A at level ,  is 

the gradient of image B at level ,  is the fused 

gradient at level  and (x,y) are the pixel coordinates. 

This equation selects the strongest edges at each level 

and pixel position, ensuring that the most prominent 

features from both images are preserved. 
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Fig. 2. Flow chart of the fusion algorithm 
 

2.5. Vessel Diameter Measurement 
 

The vessel diameter measurement method 

outlined here uses a series of precise image 

processing steps to accurately detect and analyse 

vessel diameters. It begins with contrast enhancement 

through CLAHE (Contrast Limited Adaptive 

Histogram Equalization), which boosts vessel 

visibility by enhancing contrast [26]. Next, edge 

detection via the Canny method identifies vessel 

boundaries, with an optional morphological closing 

step to seal small gaps in these edges. 

Afterward, skeletonization reduces the vessel 

image to a single-pixel-wide structure, simplifying 

the geometry for measurement. A distance transform 

then calculates the Euclidean distance from each pixel 

to the nearest edge; doubling this distance gives an 

estimated diameter at each skeleton point. Finally, all 

non-zero diameter values are collected, and the mean 

diameter is calculated and presented for analysis [27]. 

 

 
 

Fig. 3. Flow chart of the vessel diameter measurement algorithm 
 

3. Results and discussion 
 

To evaluate the proposed fusion algorithm’s 

performance relative to traditional filters, tests were 

conducted on a set of 20 randomly selected retinal 

images. Figure 4 provides examples of vascular maps 

generated using the Gradient Pyramid fusion, 

Wavelet Transform-based algorithm, and Guided 

Filter. Diameter measurements were made for retinal 

vessels across all images, comparing processed, 

fused, and ground truth data for a comprehensive 

assessment. 

 

 
 

Fig. 4. Examples of vascular map. (a) Original input image; (b) ground truth image; (c) Guided 

filter; (d) Wavelet transform-based filter; (e) Gradient Pyramid fusion 
 

Figure 5 shows examples of vascular maps 

produced during the different stages of the vessel 

diameter measurement algorithm. The processed 

images (both by guided filter and wavelet algorithm) 

together with the fused image, are used as input 

information for the vessel diameter measurement 

algorithm. Over this images a contrast enhancement 

algorithm is applied, followed by Canny edge 

detector. Finally, a skeletonization operation is made 

and the blood vessel diameter map is generated, 

followed by the diameter’s values measurement. 

 

 
 

Fig. 5. Examples of vascular map. (a) Fused image; (b) ground truth image; (c) CLAHE filter; (d) 

Canny edge detection; (e) Blood vessel diameter map 
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Table 1 displays the average vessel diameter 

values along with the associated error rates for the 

Gradient Pyramid fusion, Wavelet Transform-based 

algorithm, and Guided Filter. 

This paper examines the Gradient Pyramid 

fusion algorithm's ability to generate highly accurate 

edge maps, particularly for measuring retinal vessel 

diameters and calculating error rates. One major 

advantage of this fusion method is its capability to 

produce uninterrupted edges. 

 

Table 1. The average vessel diameter values and the average percentage error 
 

Ground truth GF  WT  GPF  
2.210 2.097 5.128 2.098 5.053 2.137 3.318 

 

As shown in Table 1, the average vessel 

diameters and error percentages are reported for 

manually segmented, filtered, and fused retinal 

images. Among traditional filters, the wavelet 

transform-based filter (WT) shows the lowest error 

rates. WS’s average error rate is 5.053%, while GF’s 

error rate is 5.053%. The GPF fusion further 

improves accuracy, with an error rate of 3.318%. 

As illustrated in Figure 4, the WT and GF filters 

enhance the image and improve edges, but there are 

still areas where there is not enough of a difference 

between the blood vessel edge and the background. 

Furthermore, the fusion method achieves greater 

accuracy and lower error rates than traditional filters. 

Gradient Pyramid fusion yields the highest alignment 

with the ideal edge map, as defined by manual 

segmentation. Traditional enhancement algorithms 

may lack precision, while the fusion technique 

effectively combines the strengths of both filters to 

achieve smooth, continuous edges without over-

detection. 

Despite the additional edges from distorted 

vessels in retinopathy maps, GPF fusion consistently 

outperforms conventional filters in identifying true 

edges. By merging the outputs of WT and GF, this 

fusion method enhances the accuracy of retinal 

images more effectively than either filter alone. 

 

4. Conclusions 
 

This study demonstrates the Gradient Pyramid 

Fusion (GPF) algorithm’s effectiveness in producing 

accurate, high-quality edge maps for retinal images, 

particularly for vessel diameter measurement. By 

combining the strengths of the Wavelet Transform 

(WT) and Guided Filter (GF), GPF significantly 

improves accuracy, continuity, and edge definition 

over traditional filters. Supported by quantitative 

analysis, the results show that GPF excels at 

preserving essential structural features while reducing 

error rates, making it a promising tool for advancing 

retinal image analysis and other applications that 

demand precise edge detection and image 

enhancement. 
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