Research on Obtaining and Characterization of Polymeric Membranes for Wastewater Treatment

  • Laurenția Geanina TIRON "Dunarea de Jos" University of Galati
  • Maria VLAD "Dunarea de Jos" University of Galati
  • Ștefan Cătălin PINTILIE "Dunarea de Jos" University of Galati
  • Ștefan BALTĂ "Dunarea de Jos" University of Galati
Keywords: polymeric membranes, pure water flux, relative air humidity, thickness gradient

Abstract

Some of the most common polymeric membranes are used in wastewater treatment. Over the years, these membranes have been studied from different points of view: their aim to improve the retention of impurities, membrane affinity to water and degree of fouling of polymeric membranes. By analysing the surface of the membrane material by chemical characteristics information can be offered regarding the polymer’s hydrophilicity or hydrophobicity. Improving membrane properties can be achieved during the stage of obtaining the polymer solution and during the thin film deposition step. To obtain polymeric membranes, the phase inversion method was used, following the influencing factors on membrane properties during the manufacturing process. The performance of membranes was studied using various parameters which lead to different results in terms of flux, permeability and hydrophilicity. This paper presents the influence of different polymer concentration, the influence of relative air humidity and the membrane thickness gradient on membrane flux and permeability.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Richard W. Baker, Membrane Technology and Applications, Membrane Technology and Research, Inc., Menlo Park, California, 2004.
[2]. ***, www.kochmembrane.com.
[3]. Johannes Martinus Koen Timmer, Properties of nanofiltration membranes; model development and industrial application, Technische Universiteit Eindhoven, Proefschrift, 2001.
[4]. Solanki Sejal J., Rupande N., Desai L. D., College of Engineering, Ahmedabad, Polymer Membrane Technology, International Journal of Engineering Science and Innovative Technology, vol. 2, issue 2, 2013.
[5]. ***, www.kochmembrane.com.
[6]. ***, www.koshland-science-museum.org.
[7]. Harmant P., Contrôle de la structure de dépôts de particules colloidales en filtration frontale et tangentielle, PhD Thesis, Université Paul Sabatier, Toulouse, 1996.
[8]. Yuzhang Zhu, Dong Wang, Lei Jiang, Jian Jin, Recent progress in developing advanced membranes for emulsified oil/water separation, NPG Asia Materials, 2014.
[9]. Hyun J., Jang H., Kim K., Na K., Tak T., Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains, J. Membr. Sci. 2006.
[10]. Shi Q., Su Y. L., Zhao W., Li C., Hu Y. H., Jiang Z. Y., Zhu S. P., Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property, J. Membr. Sci., 2008.
[11]. Han M. J., Bhattacharyya D., Morphology and transport study of phase inversion polysulfone membranes, Chemical Engineering Communications, 128, p. 197-209, 1994.
[12]. Swinyard B. T., Barrie J. A., Phase separation in nonsolvent/ dimethylformamide/polyethersulfone and nonsolvent/dimethylformamide/polysulfone systems, British Polymer Journal, 20, p. 317-321, 1988.
[13]. Chaturvedi B. K., Ghosh A. K., Ramachandhran V., Trivedi M. K., Hanra M. S., Misra B. M., Preparation, characterization and performance of polyethersulfone ultrafiltration membranes, Desalination, 133, p. 31-40, 2001.
[14]. Spricigo C. B., Petrus J. C. C., Machado R. A. F., Sarmento L. A. V., Bolzan A., Preparation and characterization of polyethersulfone membranes for use in supercritical medium, Journal of Membrane Science, 205, p. 273-278, 2002.
[15]. Norman N. Li, Anthony G. Fane, W. S. Winston Ho, T. Matsuura, Advance-Membrane-Technology-and-Application, A John Willey & Sons Inc., Publication, 2008.
[16]. Amjad Z., Ed. Reverse Osmosis: Membrane Technology, Water Chemistry and Industrial Applications, Van Nostrand Reinhold: New York, 1993.
[17]. ***, www.texaswater.tamu.edu.
[16]. ***, www.sim.utcluj.ro.
[17]. Jenny Ní Mhurchú, BE - Dead-End and crossflow microfiltration of yeast and bentonite suspensions: experimental and modelling studies incorporating the use of artificial neural networks, Journal of Membrane Science, 281, (1-2), p. 325-333, 2006.
[18]. Kaminska G., Bohdziewicz J., Calvo J. I., Prádanos P., Palacio L., Hernández A., Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance, Journal of Membrane Science, 493, p. 66-79, 2015.
[19]. Mulder M., Basic Principles of Membrane Technology, second ed., Kluwer Academic Publishers, Netherlands, 1998.
[20]. Norman N. Li, Anthony G. Fane, Winston Ho W. S., Matsuura T., Advanced Membrane Technology and Applications, Published by John Wiley & Sons Inc., Hoboken, New Jersey, 2008.
[21]. Kandlikar S. G., Steinke M. E., Contact angles of droplets during spread and recoil after impinging on a heated surface, Mechanical Engineering Department, Rochester Institute of Technology, New York, USA, vol. 79, part A, 2001.
[22]. Heru Susanto, Mathias Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, Journal of Membrane Science, 327, p. 125-135, 2009.
[23]. Jian Zuo, SinaBonyadi, Tai-Shung Chung, Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation, Journal of Membrane Science, 497, p. 239-247, 2016.
[24]. Al Malek S. A., Abu Seman M. N., Johnson D., Hilal N., Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone, Desalination, vol. 288, p. 31-39, 2012.
[25]. Elizabeth Arkhangelsky, Denis Kuzmenko, Vitaly Gitis, Impact of chemical cleaning on properties and functioning of polyethersulfone membranes, Journal of Membrane Science, vol. 305, p. 176-184, 2007.
[26]. Toraj Mohammadi, Ehsan Saljoughi, Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes, Desalination, vol. 243, p. 1-7, 2009.
[27]. See Toh Y. H., Limb F. W., Livingston A. G., Polymeric membranes for nanofiltration in polar aprotic solvents, Journal of Membrane Science, vol. 301, p. 3-10, 2007.
[28]. Sofiah H., Nora’aini A., Marinah M. A., The influence of polymer concentration on performance and morphology of asymmetric ultrafiltration membrane for lysozyme separation, Journal of Applied Sciences, vol. 10, (24), p. 3325-3330, 2010.
[29]. Jiang-Nan Shen, Hui-Min Ruan, Li-Guang Wu, Cong-Jie Gao, Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment, Chemical Engineering Journal, vol. 168, p. 1272-1278, 2011.
[30]. Jingqian Zhou, Jizhong Ren, Li Lin, Maicun Deng, Morphology evolution of thickness-gradient membranes prepared by wet phase-inversion process, Separation and Purification Technology, 63, p. 484-486, 2008.
[31]. Heru Susanto, Mathias Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, Journal of Membrane Science, 327, p. 125-135, 2009.
[32]. Zhuang Zhou, Saeid Rajabzadeh, Abdul Rajjak Shaikh, Yuriko Kakihana, Wenzhong Ma, Hideto Matsuyama, Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane, Journal of Membrane Science, vol. 514, p. 537-546, 2016.
[33]. Liu B., Chen C., Zhang W., Crittenden J., Chen Y., Lowcost antifouling PVC ultrafiltration membrane fabrication with Pluronic F127: Effect of additives on properties and performance, Desalination, 307, p. 26-33, 2012.
[34]. Ani Idris, Norashikin Mat Zain, Noordin M. Y., Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives, Desalination, vol. 207, p. 324-339, 2007.
Published
2016-06-15
How to Cite
1.
TIRON LG, VLAD M, PINTILIE Ștefan C, BALTĂ Ștefan. Research on Obtaining and Characterization of Polymeric Membranes for Wastewater Treatment. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2016 [cited 27Nov.2024];39(2):9-3. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/1260
Section
Articles