Microstructural Characterization of the TiMoZrTa Alloy
Abstract
In recent years, different types of titanium alloys have been investigated with the aim of using materials in biomaterials field, and Ti-Mo system alloys are very promising materials. Alloying titanium with biocompatible elements like Mo, Zr and Ta make then possible for these alloys to be used in medical applications. Microstructures of two TiMoZrTa alloys were investigated. Obtaining of this original recipes alloys was prepared using vacuum arc re-melting method afterwards composition of this alloys were verified by quantitative qualitative analysis EDX. Aim of this study is investigating aspects of microstructures TiMoZrTa alloys using optical and scanning electron microscopes, verifying the type of grains, that will show us the most important properties.
Downloads
References
[2]. M. G. Minciuna, P. Vizureanu, D. C. Achitei, N. Ghiban, A. V. Sandu, N. C. Forna, Structural Characterization of Some CoCrMo Alloys with Medical Applications, 65, (3), p. 335-338, 2014.
[3]. M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater, 8, p. 3888-3903, 2012.
[4]. C. Leyens, P. Manfred, Titanium and titanium alloys: Fundamentals and Applications, John Wiley & Sons, 2003.
[5]. N. T. C. Oliveira, G. Aleixo, R. Caram, A. C. Guastaldi, Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization, Materials Science and Engineering A, 452-453, p. 727-731, 2007.
[6]. L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, T. B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scr. Mater, 65, p. 21-24, 2011.
[7]. M. G. Minciuna, P. Vizureanu, V. Geanta, I. Voiculescu, A. V. Sandu, D. C. Achitei, A. M. Vitalariu, Effect of Si on the Microstructure and Mechanical Properties of Biomedical CoCrMo Alloy, Revista de chimie, 66(6), p. 891-894, 2015.
[8]. Y. L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications, Materials Science and Engineering A, 371, p. 283-290, 2004.
[9]. S. B. Gabriel, et al., Characterization of a new beta titanium alloy, Ti-12Mo-3Nb, for biomedical applications, J. Alloys Compd., 536 (Suppl.1), p. S208-S210, 2012.
[10]. A. C. Bărbînţă, R. Chelariu, M. Benchea, C. I. Crimu, S. Iacob Strugaru, C. Munteanu, A comparative analysis of new TiNb-Zr-Ta orthopedic alloys, Advanced Materials Research, 837, p. 259-264, 2014.
[11]. ***, ASM Handbook, Alloy Phase Diagrams, vol. 3, p. 254.
[12]. ***, ASM Handbook, Metallography and Microstructure, vol. 9, p. 2157-2208.
[13]. I. C. Lupu, D. Agop-Forna, I. G. Sandu, C. Mocanu, Microscopic Assessment of the Corrosion Resistance of some Superficially Enhanced Ti-Based Dental Alloys with Hidroxyapatite, Revista de Chimie, 66 (6), p. 808-812, 2015.
[14]. Lutjering G., Williams J. C., Titanium, Springer-Verlag, Berlin, p. 289, 2003.
[15]. X. H. Min, S. Emura, L. Zhang, K. Tsuzaki, Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys, Materials Science and Engineering A, 497, p. 74-78, 2008.
[16]. Oliveira N. T. C., Aleixo G., Caram R., Guastaldi A., Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization, Materials Science and Engineering A, 452-453, p. 727-731, 2007.
[17]. D. R. N. Correa, et al., Effect of substitution elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo system alloys, J Mater Res Technol., 4(2), p. 180-185, 2015.
[18]. S. Ehteman Haghighi, H. B. Lu, C. Y. Jian, G. H. Cao, D. Habibi, L. C. Zhang, Effect of α’’martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys, Materials and Design, 76, p. 47-54, 2015.