Structural Changes Associated with the Pseudoelastic Response of Fe-Based Shape Memory Alloys
Abstract
The pseudoelastic responses of two types of iron base shape memory alloys (SMAs) were introduced and discussed. The former was based on Fe-Mn-Si system, obtained by classical (CM) and by powder metallurgy (PM) manufacturing. The latter was based on Fe-Ni-Co system being processed by a non conventional technology comprising melt spinning and heat treatment. In the case of FeMnSibased SMAs, CM specimens obviously experienced larger ductility and a more pronounced pseudoelastic response while PM specimens were stiffer and underwent larger work-hardening. On the other hand, melt spun FeNiCo-based SMAs revealed an outstanding superelasticity in the case of micro-indentation tests. By means of scanning electron microscopy (SEM) observations, a martensitic morphology was identified in FeMnSi-based SMAs while FeNiCo-based SMAs revealed an austenitic structure. The presence of both α’ and ε martensites was confirmed in FeMnSibased SMAs by means of X-ray diffraction (XRD). In fully austenitic melt-spun and aged FeNiCo-based SMAs, no martensite was indentified on XRD patterns. These results sustain the conclusion that FeMnSi-based SMAs, that contain pre-existing martensite, experienced a pseudoelastic behavior caused by crystallographic reorientation of martensite plate variants while austenitic FeNiCo-based SMAs experienced a reversible stress-induced martensitic transformation, at room temperature.
Downloads
References
[2]. Sun L., Huang W. M., Ding Z., Zhao Y., Wang C. C., Purnawali H., Tang C. - Mater Design, 33 (2012), p. 577-640.
[3]. Duerig T. W., Zadno R., Engineering Aspects of Shape Memory Alloys, edited by Duerig T W, Melton K N, Stöckel D, Wayman C M, (Butterworth-Heinemann) 1990, p. 369-393.
[4]. Wasilewski R. J. - Shape Memory Effects in Alloys, edited by Perkins J, (Plenum Press, New York-London), 1975, p. 245-271.
[5]. Dunne D. - Phase transformations in steels: Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Vol. 2, edited by Pereloma E & Edmonds D V, (Woodhead Publishing), 2012, p. 83-125.
[6]. Xiao-Xiang Wang, Chu-Yang Zhang - J Mater Sci Letters, 17 (1998), p. 1795-1796.
[7]. Ma J., Kockar B., Evirgen A., Karaman I., Luo Z. P., Chumlyakov Y. I. - Acta Mater, 60, 2012, p. 2186-2195.
[8]. Zhao C. - J Mater Sci Letters, 19, 2000, p. 1711 – 1713.
[9]. Sawaguchi T., Kikuchi T., Kajiwara S. - Smart Mater Struct, 14, 2005, p. S317-S322.
[10]. Chumlyakov Y. I., Kireeva I. V., Panchenko E. Y., Aksenov V. B., Kirillov V. A., Ovsyannikov A. V., Zakharova E. G., Sehitoglu H. - Russ Phys J., 46 (8), 2003, p. 811-823.
[11]. Chumlyakov Y. I., Kireeva I. V., E. Panchenko Y., Zakharova E. G., Kirillov V. A., Efimenko S. P., Sehitoglu H. - Dokl Phys, 49 (1), 2004, p. 47-50.
[12]. Ma J., Karaman I. - Science, 327, 2010, p. 1468-1469.
[13]. Tanaka Y., Himuro Y., Kainuma R., Sutou Y., Omori T., Ishida K. - Science, 327, 2010, p. 1488-1490.
[14]. Söyler A. U., Özkal B., Bujoreanu L. G. - Sintering Densification and Microstructural Characterization of Mechanical Alloyed Fe-Mn-Si based Powder Metal System, Supp. Proc.TMS, 3, 2010, p. 785-792.
[15]. Söyler A. U., Özkal B., Bujoreanu L. G. - Investigation of Mechanical Alloying Process Parameters on Fe-Mn-Si Based System, Supp. Proc. TMS, 1, 2010, p. 577-583.
[16]. Bujoreanu L. G., Stanciu S., Ozkal B., Comaneci R. I., Meyer M. - ESOMAT 2009, 05003, 2009.
[17]. Paraschiv A. L., Suru M. G., Lohan N. M., Pricop B., Bujoreanu L. G., Borza F., Lupu N. - Factors influencing the structure and proprieties of polycrystalline magnetic Fe-Ni-Co-AlTa-B shape memory alloy, Proceedings of the International Conference on Shape Memory and Superelastic Technologies May 20–24, 2013, Prague, Czech Republic, p. 27-28.
[18]. Gu N., Lin C., Song X., Peng H., Yin F., Liu Q. - Mater Sci Forum, 327-328, 2000, p. 231-234.
[19]. Pricop B., Söyler U., Comăneci R. I., Özkal B., Bujoreanu L. G. - Phys Proced, 10, 2010, p. 125-131.
[20]. Cherdyntsev V. V., Pustov L. Y., Kaloshkin S. D., Tomilin I. A., Shelekhov E. V., Laptev A. I., Baldokhin Y. V., Estrin E. I. - Phys Met Metallogr, 104(4), 2007, p. 408-414.
[21]. Guo Y.-M., Wang G.-X., Feng J.-H., Chen C.-X., Peng H.- F. - J Iron Steel Res Int, 23(9), 2011, p. 50-54.
[22]. Wenyi Yan, Qingping Sun, Xi-Qiao Feng, Linmao Qian - Int J Solids Struct, 44, 2007, p. 1-17.
[23]. Maletta C., Furgiuele F., Sgambitterra E., Callisti M., Mellor B. G., Wood R. J. K. - Frattura ed Integrità Strutturale, 21 2012, p. 5-12.
[24]. Sekido K., Ohmura T., Sawaguchi T., Koyama M., Park H. W., Tsuzaki K. - Scripta Mater, 65, 2011, p. 942-945.
[25]. Titenko A. N., Demchenko L. D. - J Mater Eng Perform, 21, 2012, p. 2525-2529.
[26]. Sawaguchi T., Bujoreanu L.-G., Kikuchi T., Ogawa K., Yin F. - ISIJ Inter, 48(1), 2008, p. 99-106.
[27]. B. Pricop, U. Söyler, B. Özkal, N. M. Lohan, A. L. Paraschiv, M. G. Suru, L. G. Bujoreanu - Mater Sci Forum, 738-739, 2013, p. 237-241.
[28]. Sagaradze V. V., Kabanova I. G., Kataeva N. V., Klyukina M. F. - Mater Sci Forum, 738-739, 2013, p. 200-205.
[29]. Yonghong Geng, Mingjiang Jin, Wenjing Ren, Weimin Zhang, Xuejun Jin - J Alloy Compd, 2012, doi:10.1016/j.jallcom.2012.03.033.
[30]. Pricop B., Söyler U., Lohan N. M., Özkal B., Chicet D., David A., Bujoreanu L. G. - Optoelectron Adv Mat, 5(5), 2011, p. 555-561.
[31]. Bouraoui T., Jemal F., Ben Zineb T. - Strength Mater, 40(2), 2008, p. 203-211.
[32]. Hayashi R., Murray S. J., Marioni M., Allen S. M. O’Handley R. C. - Sensors Actuat A, 81, 2000, p. 219–223.