Microstructural Evolution of Al 1100 Aluminum Subjected to Severe Plastic Deformation
Abstract
The goal of this document is to promote a sequence of bulk-deformation processes able to produce ultrafine grain and also nanostructured wires with adequate length to be interesting for processing in metallurgical industry. Samples of aluminum Al 1100alloy (98.41 % Al) were subjected to repetitive Equal Channel Angular Pressing at room temperature in 1 to 4 passes. Severe deformed specimens were cold classical plastic deformed in wires. Microstructural evolution and mechanical properties were investigated. Optical microscopy progression is evaluated through a sequential interrupted process on each separate ECAP pass. The XRD studies reveal the influence of SPD on grain refinement of samples. A simply and new technology for obtaining intermediary products UFG and nanocristalline wires was developed.
Downloads
References
[2]. H. Gleiter - Nanostructured Materials: Basicn Concepts, Microstructure and Properties, Forschungszentrum Karlsruhe, Institut fur Nanotechnologie, Postfach 36 40, D-76021 Karlsruhe.
[3]. Ruslan Z. Valiev, Terence G. Langdon - Principles of equalchannel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881–981.
[4]. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang - Severe plastic deformation (SPD) processes for metals, Manufacturing Techology 37, (2008) 716-735.
[5]. M.A. Meyers et al. - Progress in Materials Science, 51 (2006) 427–556.
[6]. A.R. Eivani, A. Karimi Taheri - A new method for estimating strain in equal channel angular extrusion, Journal of Materials Processing Technology 183 (2007) 148-153.
[7]. A. A. Gadzer, F. Dalla Torre, C.F. Gu, C.H.J. Davies, E.V. Pereloma - Microstructure and texture evolution of bcc metals subjected to equal channel angular extrusion, Materials Science and Engineering 415 (2006), 126-139.
[8]. A. Gadzer, F. Dalla Torre, C. F. Gu, C. H. J. Davies, E. V. Pereloma - Progressive structure during equal channel angular extrusion, Materials Science and Engineering A 437 (2006) 259-267.
[9]. Wei Q, Kecskes L, Jiao T, Hartwig KT, Ramesh KT, Ma E. - Acta Mater (2004); 52:1859–69.
[10]. Jia D., Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ. - Appl Phys Lett (2001); 79:611–3.
[11]. Wang YM, Ma E., Chen M.W. - Appl Phys Lett (2002); 80:2395–7.
[12]. Jia D., Ramesh K.T., Ma E. - Scripta Mater (2000); 42:73.
[13]. Meyers M., Pak H.R. - Acta Mater (1986); 34:2493.
[14]. Meyers M.A., Subhash G., Kad B.K. -Prasad L. Mech Mater (1994); 17:175.
[15]. Andrade U.R., Meyers M.A., Vecchio KS, Chokshi AH. - Acta Metall Mater (1994);42:3183.
[16]. Chen R.W., Vecchio KS. -J Phys IV (1994); 4: C8-4591.
[17]. Murayama M, Howe JM, Hidaka H, Takaki S. - Science (2002); 295: 2433–5.
[18]. Xu Y.B., Zhong W.L., Chen Y.J., Shen L.T., Liu Q., Bai Y.L., et al. - Mater Sci Eng A, (2001); 299: 287.
[19]. Li Q., Xu Y.B., Lai Z.H., Shen L.T., Bai Y.L. - Mater Sci Eng A (2000); 276:127.