Effect of Acidic Environment on Cu-Al2O3 Codeposition

  • Mihaela-Daniela GAVRIL (DONOSE) "Dunarea de Jos" University of Galati, Romania
  • Constantin GHEORGHIEŞ "Dunarea de Jos" University of Galati, Romania
  • Alina-Mihaela CANTARAGIU "Dunarea de Jos" University of Galati, Romania
  • Denys Cristina VLADU (RADU) "Dunarea de Jos" University of Galati, Romania
  • Sorin DONOSE 41 ”Grigore Teologul” School, Galati, Romania
Keywords: electrocodeposition, cooper, alumina, corrosion, Tafel curves

Abstract

Electrocodeposition of alumina nanoparticles with copper onto nickel substrate was prepared through the potentiostatic method. The codeposited films were obtained at different nanoparticle concentrations: 5, 10, 15, 20 and 25 gL-1. The corrosion behaviour of codeposited films has been observed by introducing them in different corrosive environments: 0.5 M H2SO4, HCl and HNO3 solutions. The corrosion study has been realized using the linear polarization method. The corrosion rate and polarisation resistance values were obtained from the Tafel curves. The highest concentration of alumina nanoparticles had increased the corrosion resistance of Cu-Al2O3 codeposited films. Also, in order to confirm these results, the gravimetric parameter was calculated by means of the mass loss method.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. A. Vicenzo and P.L. Cavallotti - Copper electrodeposition from a pH 3 sulfate electrolyte, J. Appl. Electroch., 32: 743–753, 2002.
[2]. M. Palaniappa, M. Jayalakshmi, P. M. Prasad, K. Balasubramanian - Chronopotentiometric studies on the passivation of industrial copper anode at varying current densities and electrolyte concentrations, Int. J. Electrochem. Sci., 3, 452–461, 2008.
[3]. D. Grujicic and B. Pesic - Electrodeposition of copper: the nucleation mechanisms, Electrochimica Acta, 47, 2901-2912, 2002.
[4]. Z. Anđić, M. Korać, M. Tasić, Ž. Kamberović, K. Raić, Synthesis and Sintering of Cu-Al2O3 Nanocomposite Powders Produced by a Thermochemical Route, Metalurgija Journal of Metallurgy, 13(1), 71-81, 2007.
[5]. D. Popovici, E. Trimbitasu, O. Pantea, D. Bombos, L. Antonescu - Determinarea eficientei inhibitorului de coroziune Aticamina OTM 2, Buletinul Universităţii Petrol-Gaze din Ploieşti, LIV, Seria Tehnică, 4, 189-196, 2002.
[6]. A. M. Cantaragiu, G. Carac, C. Gheorghies - Electrochemical study of AISI 316L Stainless Steel in different nanoparticle suspensions, J. Optoel. Adv. Mater., 12(20), 12, 2391-2399, 2010, ISSN: 1454-4164.
[7]. W. Stephen Tait - Ph.D. An introduction to electrochemical corrosion testing for practicing engineers and scientists, Pair O Docs Pubns, ISBN 9780966020700, 1994.
[8]. H. Davy - On some chemical agencies of electricity (Bakerian Lecture of 1807), Phil. Trans. Roy. Soc. (London), 97, 56, 1807.
[9]. K. Babic-Samardzija, K. F. Khaled and N. Hackerman - heterocyclic amines and derivatives as corrosion inhibitors for iron in perchloric acid, Anti-Corrosion Methods and Materials 52(1), 11-21, 2005.
[10]. VoltaMaster 4 - Application Help Handbook; www.radiometer-analytical.com/voltalab/en_ocp.asp.
[11]. M. Stoica, G. Cârâc, C. Apetrei, A.M. Cantaragiu - Electrochemical study of stainless steel surfaces in biodegradable biocides, J. Optoel. Adv. Mater., 12(35), 4, 919-922, 2010.
Published
2011-12-15
How to Cite
1.
GAVRIL (DONOSE) M-D, GHEORGHIEŞ C, CANTARAGIU A-M, VLADU (RADU) DC, DONOSE S. Effect of Acidic Environment on Cu-Al2O3 Codeposition. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2011 [cited 27Dec.2024];34(4):16-0. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/2915
Section
Articles