Synthesis and Spheroidization of Disperse High-Melting (Refractory) Powders in Plasma Discharge
Abstract
One of the areas of using arc and radio-frequency induction (RFI) plasma in metallurgy is to obtain refractory metals and materials with spherical shape of particles. The main advantages of using spherically shaped particles are high purity of particle surface, high bulk density (minimum surface/volume ratio) and ability to gain control on porous article properties and to separate the particles in fractions. Spherical particles are needed in the formation of powder-metallurgy elements with desired and uniform porosity, which are operated at high temperature, in highly aggressive media and at high velocity fluid flows.
The present work considers the possibilities of using arc and RFI-plasma in metallurgy to obtain high-melting point metals and materials with spherical shape of particles.
Downloads
References
[2]. Dendy, R. - Plasma Physics: an Introductory Course. Cambridge Univ. Press,Cambridge, 1995.
[3]. Boyd T. J. M. & Sanderson J. J. - The Physics of Plasmas Cambridge University Press Cambridge, U.K.; New York, 2003.
[4]. Shalom Eliezer - Introduction to Plasma Physics: The Fourth State of Matter, Institute of Physics Publishing Bristol and Philadelphia IOP Publishing Ltd 2001.
[5]. Blinkov I. V. - Fisico-chimia visokih temperatur I davlenii, Moskva 1988. (In Russian).
[6]. Shalimov A. G., Gotin V. N., Tulin N. А. - Intensifikatsia protsesov spetialnoi elektrometalurgii, Moskva, 1988. (In Russian).
[7]. Dashkevich I. P., Visokochestotnie razryadi v Elektrotermii, vipusk 13, “Mashinostroenie”, Leningrad, 1980. (In Russian).
[8]. Plazma Technology in metallurgical processing, Iron and Steel Society, Inc.1987.
[9]. Dembovskii V. - Plasmennaya metalurgiya, “Metalurgiya”, M., 1981. (In Russian).
[10]. Kalinin N. N. - Metalurgicheskie visokochestotnie plazmotroni: Elektro I gazo dinamika, “Nauka”, M., 1987. (In Russian).
[11]. Tsenov Ts. - Diplomna rabota “Konstruirane I izrabotvane na postoyanno tokova zachranvashta sistema za metalurgichna plazmena instalatsiya”, UCTM, Sofia 1989, (In Bulgarian).
[12]. Xu J.L., K.A. Khor, R. Kumar - Physicochemical differences after densifying radio frequency plasma sprayed hydroxyapatite powders using spark plasma and conventional sintering techniques, Materials Science and Engineering A 457 (2007), 24-32.
[13]. Dahl P., I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.-A. Einarsrud - Densification and properties of zirconia prepared by three different sintering techniques, Ceramics International 33 (2007),1603-1610.
[14]. Anselmi-Tamburini U., J.E. Garay, Z.A. Munir - Fundamental investigations on the spark plasma sintering/synthesis process III. Current effect on reactivity, Materials Science and Engineering A 407 (2005), 24-30.
[15]. Wenbin Liu, Xiaoyan Song, Jiuxing Zhang, Fuxing Yin, Guozhen Zhang - A novel route to prepare ultrafine-grained WC–Co cemented carbides, Journal of Alloys and Compounds 458 (2008), 366-371.
[16]. Zhang Zhao-Hui, Fu-Chi Wang, Lin Wang, Shu-Kui Li - Ultrafine-grained copper prepared by spark plasma sintering process, Materials Science and Engineering A 476 (2008), 201-205.
[17]. Tiwari Devesh, Bikramjit Basu, Koushik Biswas - Simulation of thermal and electric field evolution during spark plasma sintering, Ceramics International 35 (2009), 699-708.