Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials

  • Ecaterina Magdalena MODAN University of Piteşti, Romania
  • Adriana Gabriela PLĂIAȘU University of Piteşti, Romania
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.35219/mms.2020.1.08

Résumé

Reducing the size of macroscopic systems to nanometers can be achieved by top down synthesis by different chemical or physical methods. The bottom-up approach is a method in which the components of the atomic or molecular dimensions are assembled together to form nanoparticles. The bottom-up method is used for the elaboration of nanoparticles, because it allows the control of their size. This article presents a review of the advantages and disadvantages of chemical methods for the development of nanomaterials.

Creative Commons License

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Références

[1]. Mittal A. K., Chisti Y., Banerjee U. C., Biotechnology Advances, 31 (2), p. 346-356, 2013.
[2]. Ebelmen J. J., Comptes rendus de l'Académie des Sciences 19, 398, (1844).
[3]. Ebelmen J., Annals of Chemistry and of Physics, 57, p. 319-355, 1846.
[4]. Geffcken W., Berger E., Verfahren zur Änderung Reflexionsvermögens Optischer Gläser, Deutsches Reichs patent, 736 411, assigned to Jenaer Glaswerk Schott & Gen, 1939.
[5]. Shek C. H., Lin G. M., Lai. Nanostruct Mater, 11(7), p. 831-835, 1999.
[6]. Bruni S., Cariati F., Casu M., Lai A., Musinu A., Piccaluga G., Solinas S., Nanostruct. Mater., 11 (5), p. 573, 1999.
[7]. Andrei Jitianu, J Solgel Sci Technol, 26, p. 483-488, 2003.
[8]. Mahshid S., Askari M., Sasani Ghamsari M., J. Mater. Process. Technol., 189, p. 296-300, 2007.
[9]. Gash A. E., Tillotson T. M., Satcher J. H., Poco J. F., Hrubesh L. W., Simpson R. L., Chem. Mater, 13(200), p. 999-1007, 2001.
[10]. Tang N. J., Zhang W., Jiang H. Y., Wu X. L., Liu W., Du Y. W., J. Magn. Magn. Mater., 282, p. 92-95, 2004.
[11]. Shaker S., Zafarian S., Chakra C. S., Rao K. V., Int J Innov Res Sci Eng Technol, 2(7), p. 2969-2973, 2013.
[12]. Abolfazl Khodadadi, Majid Farahmandjou, Mojtaba Yaghoubi, Ali Reza Amani, J Am Ceram Soc, 16(2), p. 429-882, 2018.
[13]. Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, Alan J. Heeger, Adv. Mater. Technol., 23, p. 1679-1683, 2011.
[14]. Tayseir M., Abd. Ellateif., Saikat. Mitra., J. of Adv in Nanomat, 2, 4, 2017.
[15]. Tai L. W., Lessing P., J. Mater. Res., vol. 7, p. 502-510, 1992.
[16]. Tai L. W., Lessing P. A., J. Mater. Res., vol. 7, p. 511-519, 1992.
[17]. Kakihana M., Yoshimura M., Bull. Chem. Soc. Jpn. vol. 72, p. 1427-1443, 1999.
[18]. Julian Eastoe Martin, J. Hollamby Laura Hudson. Adv Colloid Interfac, 128-130, 5-15, 2006.
[19]. Destrée C., George S., Champagne B., Guillaume M., Ghijsen J., Nagy J. B., Colloid Polym Sci, 286, p. 15-30, 2008.
[20]. Zhong-min Ou, Hiroshi Yao, Keisaku Kimura, J Photochem Photobiol A Chem, 189-1, p. 7-14, 2007.
[21]. Wanzhong Z., Xueliang Q., Jianguo C., Chem. Phys, 330(3), p. 495-500, 2006.
[22]. Hu A., Yao Z., Yu X., J. Appl. Polym. Sci, 2009.
[23]. Marie-Paule Pileni, Cr. Chim 6, 8-10, p. 965-978, 2003.
[24]. Pileni M. P., J. Phys. Chem. C, 17, p. 7476-7487, 2001.
[25]. M. P., J. Phys. Chem. C, 111, p. 9019-9038, 2007.
[26]. Pileni M. P., Acc. Chem. Res., 41, p. 1799-1809, 2008.
[27]. Lopez Quintela M. A., Tojo C., Blanco M. C., Garcia Rio L., J. R. Curr. Opin. Colloid. Interf. Sci., 9, p. 264-278, 2004.
[28]. Cushing B. L., Kolesnichenko V. L., C. J. O. Chem. Rev., 104, p. 3893-3946, 2004.
[29]. Shervani Z., Ikushima Y., Hakuta Y., Kunieda H., K. Colloid. Surf. A: Physicochem. Eng. Asp., 289, p. 229-232, 2006.
[30]. Holmes J. D., Lyons D. M., K. J. Chem. Eur. J., 9, p. 2144-2150, 2003.
[31]. Boutonnet M., Kizling J., Stenius P., Colloid Surf., 5, p. 209-225, 1982.
[32]. Boutonnet M., Kizling J., Stenius P., Maire G., Colloid. Surf., 5, p. 209-225, 1982.
[33]. Bandow S., Kimura K., Konno K., Kitahara A., Jpn. J. Appl. Phys., 26, p. 713-717, 1987.
[34]. Ayyup P., Multani M., Barma M., Palkar V. R., Vijayaraghavan R., J. Phys. C: Solid State Phys., 21, p. 2229-2245, 1988.
[35]. Hou M. J., Shah D. O., In: Attia, Y.A. (Ed.), Elsevier, Amsterdam, 443, 1988.
[36]. Lal M., Chhabara V., Ayyub P., Maitra M. A., J. Mater. Res., 13, p. 1249-1254, 1998.
[37]. Zhang D., Qi L., Ma J., Cheng H., J. Mater. Chem., 12, p. 3677-3680, 2002.
[38]. Maqsood Ahmad Malik, Mohammad Younus Wani, Mohd Ali Hashim, Arab J Chem, 5 (4), p. 397-417, 2012.
[39]. Komarneni S., Li Q., Stefansson K. M., Roy R., J. Mater. Res., 8, 12, p. 3176-3183, 1993.
[40]. ***, Chemical encyclopedia, vol. 1, Moscow: Sovetskaja enciklopedija, p. 567, 1988.
[41]. ***, Hydrothermal synthesis, Wikipedia, the free Encyclopedia.http://en.wikipedia.org/wiki/Hydrothermal_synthesis, 2009.
[42]. Meskin P. E., Ivanov V. K., Baranchikov A. E., Churagulov B. R., Tretyakov Yu. D., Ultrason. Sonochem, 13, p. 47-53, 2006.
[43]. Suslick K. S. Kirk-Othmer, Encyclopedia of Chemical Technology, Ed. J. Wiley & Sons: New York, 26, p. 517-541, 1998.
[44]. Hangxun Xu, Brad W. Zeiger, Kenneth S. Suslick, Chem Soc Rev, 2012.
[45]. Gonzalez J. R., Alcantara R., Nacimiento F., Tirado J. L., Electrochem. Acta, 56, p. 9808-9817, 2011.
[46]. Yang P., Zhang A. Y., Cheng X., Zhou G. J., Lue M. K., J. Colloids Int. Sci., 351, p. 77-82, 2010.
[47]. Aslani A., Bazmandegan-Shamili A., Kaviani K., Phys. B Condens. Matter, 405, p. 3972-3976, 2010.
[48]. Askarinejad A., Bagherzadeh M., Morsali A., Appl. Surf. Sci. 256, p. 6678-6682, 2010.
[49]. Zhu S. M., Zhang D., Chen Z. X., Zhou G., Jiang H. B., Li J. L., J. Nanoparticle Res., 12, p. 2445-2456, 2010.
[50]. Ding C., Ting X. A., J. Am. Ceram. Soc., 93, p. 2675-2678, 2010.
[51]. Ranjbar-Karimi R., Bazmandegan-Shamili A., Aslani A., Kaviani K., Phys. B Condens. Matter., 405, p. 3096-3100, 2010.
[52]. Baykal A., Kavas H., Durmus Z., Kazan S., Topkaya R., Toprak M. S., Cent. Eur. J. Chem., 8, p. 633-638, 2010.
[53]. Theerdhala S., Bahadur D., Vitta S., Perkas N., Zhong Z. Y., Gedanken A., Ultrason. Sonochem., 17, p. 730-737, 2010.
[54]. Koo Y. S., Yun B. K., Jung J. H., J. Magn., 15, p. 21-24, 2010.
[55]. Xiaohua J., Huiqing F., Faqiang Z., Lei Q., Ultrason. Sonochem., 17, p. 284-287, 2010.
[56]. Plăiașu A. G., Editura Universitatii din Pitesti, 2016.
[57]. Barca E. S., Plaiasu A. G., Abrudeanu M., Istrate B., Luca D., Munteanu C., J. Optoelectron. Adv. M., 17, 9-10, p. 1522-1527, 2015.
[58]. Plăiașu A. G, Abrudeanu M., Dicu M., Monty C., J. Optoelectron. Adv. M., 16, 9-10, p. 1116-1112, 2014.
Publiée
2020-03-15
Rubrique
Articles