Structural Effects of Heat Treatment Holding-Time on Dynamic and Damping Behaviour of an Fe-28Mn-6Si-5Cr Shape Memory Alloy
Abstract
The paper reports the structural effects of holding time period, during heat treatment, on the dynamic and damping behavior of a Fe-28Mn-6Si-5Cr (mass. %) shape memory alloy. After casting and hot rolling, solution treatment at 1050 oC was applied for five holding times, 2, 4, 6, 8 and 10 hours, followed by water quenching. The specimens were analyzed by scanning electron microscopy and X-ray diffraction which emphasized that only the 2-hours solution treated specimens contained ε-hexagonal close packed (hcp) martensite and experienced the highest internal friction value. These specimens were tested on a special device which transformed both tension and compression into tensile strain applied to the specimens and proved to be a promising solution for anti-seismic damper.
Downloads
References
[2]. Dong Z. Z., Kajiwara S., Kikuchi T., Sawaguchi T., Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe-15Mn-5Si-9Cr-5Ni-(0.5-1.5)NbC alloys, Acta Mater., 53, p. 4009-4018, 2005.
[3]. Bujoreanu L. G., Dia V., Stanciu S., Susan M., Baciu C., Study of the tensile constrained recovery behavior of a Fe-Mn-Si shape memory alloy, Eur. Phys. J. Special Topics, 158, p. 15-20, 2008.
[4]. James R. D., Hane K. F., Martensitic transformations and shape-memory materials, Acta Mater., 48, p. 197-222, 2000.
[5]. Bergeon N., Guenin G., Esnouf C., Microstructural analysis of the stress-induced ε martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy: Part II: Transformation reversibility, Mater. Sci. Eng. A, 242, p. 87-95, 1998.
[6]. Murakami M., Suzuki H., Nakamura Y., Effect of silicon on the shape memory effect of polycrystalline Fe-Mn-Si alloys, Trans. ISIJ 27:B87, 1987.
[7]. Kajiwara S., Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys, Mat. Sci. Eng. A, 273-275, p. 67-88, 1999.
[8]. Bracke L., Mertens G., Penning J., De Cooman B. C., Liebherr M., Akdut N., Influence of phase transformations on the mechanical properties of high-strength austenitic Fe-Mn-Cr steel, Metall. Mater. Trans. A, 37A, p. 307-317, 2006.
[9]. Arruda G. J., Buono V. T. L., Andrade M. S., The influence of deformation on the microstructure and transformation temperatures of Fe-Mn-Si-Cr-Ni shape memory alloys, Mater. Sci. Eng. A, 273-275, p. 528-532, 1999.
[10]. Li J. C., Zhao M., Jiang Q., Alloy design of Fe-Mn-Si-Cr-Ni shape-memory alloys related to stacking-fault energy, Metall. Mater. Trans. A, 31(3), p. 581-584, 2000.
[11]. Otsuka H., Fe-Mn-Si Based Shape Memory Alloys, MRS Proceedings, 246, 309, doi:10.1557/PROC-246, p. 309-320, 1991.
[12]. Druker A. V., Perotti A., Esquivel I., Malarría J., A manufacturing process for shaft and pipe couplings of Fe-Mn-Si-Ni-Cr shape memory alloy, Mater. Design, 56, p. 878-888, 2014.
[13]. Maruyama T., Kurita T., Kozaki S., Andou K., Farjami S., Kubo H., Innovation in producing crane rail fishplate using Fe-Mn-Si-Cr based shape memory alloy, Mater. Sci. Technol., 24, p. 908-912, 2008.
[14]. Sawaguchi T., Kikuchi T., Ogawa K., Kajiwara S., Ikeo Y., Kojima M., Ogawa T., Development of prestressed concrete using Fe-Mn-Si-based shape memory alloys containing NbC, Mater. Trans. 47, p. 580-583, 2006.
[15]. Shahverdi M., Czaderski C., Motavalli M., Iron-based shape memory alloys for prestressed near surface mounted strengthening of reinforced concrete beams, Constr. Build. Mater. P. 11228-11238, 2016.
[16]. Sawaguchi T., Maruyama T., Otsuka H., Kushibe A., Inoue Y., Tsuzaki K., Design Concept and Applications of FeMnSi-Based Alloys from Shape-Memory to Seismic Response Control, Mater. Trans., 57(3), p. 283-293, 2016.
[17]. Otsuka H., Yamada H., Maruyama T., Tanahashi H., Matsuda S., Murakami M., Effects of alloying additions on Fe-Mn-Si shape memory alloys, Trans. ISIJ 30, p. 674-679, doi: 10.2355/isijinternational. 30.674, 1990.
[18]. Sawaguchi T., Sahu P., Kikuchi T., Ogawa K., Kajiwara S., Kushibe A., Higashino M., Ogawa T., Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension-compression loading of an Fe-Mn-Si-based shape memory alloy, Scripta Mater., 54, p. 1885-1890, 2006.
[19]. Bidaux J.-E., Schaller R., Benoit W., Study of hcp-fcc phase transition in Cobalt by acoustic measurements, Acta Metall., 37(3), p. 803-811, 1989.
[20]. De A. K., Cabanas N., De Cooman B. C., Fcc-hcp Transformation-Related Internal Friction in Fe-Mn Alloys, Z. Metallkd., 93, p. 228-235, 2002.
[21]. Popa M., Lohan N. M., Popa F., Pricop B., Bujoreanu L. G., Holding-temperature effects on thermally and stress insudec martensitic tranasformations in an FeMnSiCrNi SMA, Mater. Today Proced., 19, p. 956-962, 2019.
[22]. Dolce M., Cardone D., Marnetto R., Implementation and testing of passive control devices based on shape memory alloys, Earthquake Engng Struct Dyn 29, p. 945-968, 2000.
[23]. Paleu V., Gurău G., Comăneci R. I., Sampath V., Gurău C., Bujoreanu L. G., A new application of Fe-28Mn-6Si-5Cr (mass%) shape memory alloy, for self-adjustable axial preloading of ball bearings, Smart Materials and Structures, 27(7), 075026, (11pp), 2018.
[24]. Chung C. Y., Chen Shuchuan, Hsu T. Y., Thermomechanical training behavior and its dynamic mechanical analysis in an Fe-Mn-Si shape memory alloy, Materials Characterization, 37(4), p. 227-236, 1996.