Spectral Characterization of Macro-Heterocyclic Compound RhTMPyP / ZnTSPc
Keywords:
porphyrins, phtalocyanines, macro-heterocyclic compound, UV-Vis, FT-IR, Raman
Abstract
Macro-heterocyclic compounds, such as porphyrins and phthalocyanines, are being studied extensively for their important physical and chemical properties. Their ability to absorb light throughout the spectrum and self-organization being adequate for the realization of several applications. Investigations of the spectral properties of the supramolecular assembly RhTMPyP/ ZnTSPc- 5,10,15,20 rhodium tetramethyl-pyridyl porphyrin / 2,9,16,23 zinc tetrasulfonated-phthalocyanine are registered by UV-Vis, FT-IR and Raman spectroscopic techniques.
Downloads
Download data is not yet available.
References
[1]. Buchler J. W., Ng D. K. P., Metal Tetrapyrrole Double- and Triple-Deckers with Special Emphasis on Porphyrin Systems, New York, NY: Academic Press, 2000.
[2]. Bian Y., Zhang Y., Ou Z., Jiang J., Chemistry of sandwich tetrapyrrole rare earth complexes, in Handbook of Porphyrin Science, Singapore: World Scientific Publishing Co. Pte. Ltd., p. 249-460, 2011.
[3]. Ion R.-M., Yilmaz I., Bekaroglu O., Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine, Journal of the Serbian Chemical Society, 64(7-8), p. 453-458, 1999.
[4]. Agirtas S., Ion R.-M., Bekaroglu O., Spectral study of the supramolecular assemblies porphyrins-phthalocyanines, Materials Science and Engineering: C, 7(2), p. 105-110, 1999.
[5]. Cook L. P., Brewer G., Wong-Ng W., Structural aspects of porphyrins for functional materials applications, Crystals, 7(7), p. 223-244, 2017.
[6]. Thompson S. J., Brennan M. R., Lee S. Y., Dong G., Synthesis and applications of rhodium porphyrin complexes, Chemical Society Reviews, 47(3), p. 929-981, 2018.
[7]. Suslick K. S., Rakow N. A., Kosal M. E., Chou J. H., The materials chemistry of porphyrins and metalloporphyrins, Journal of Porphyrins and Phthalocyanines, 4, p. 407-413, 2000.
[8]. de Toledo M., et al., Zinc phthalocyanine tetrasulfonateloaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications, Photodiagnosis and Photodynamic Therapy, 32, 2020.
[9]. Collman J. P., Garner J. M., Woo L. K., The chemistry of rhenium and tungsten porphyrin complexes in low oxidation states. Synthesis and characterization of rhenium and tungsten porphyrin dimers containing metal-metal multiple bonds, Journal of the American Chemical Society, 111 (21), p. 8141-8148, 1989.
[10]. Imahori H., Umeyama T., Kurotobi K., Takano Y., Selfassembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport, Chemical Communications, 48(34), p. 4032-4045, 2012.
[11]. Pop S. F., Ion R.-M., Corobea M. C., Raditoiu V., Spectral and thermal investigations of porphyrin and phthalocyanine nanomaterials, Journal of Optoelectronics and Advanced Materials, 13(7), p. 906-911, 2011.
[12]. Logunov S. L., Rodgers M. A. J., Self-assembled ion-pair complexes between porphyrins and bipyridinium species: picosecond dynamics of charge recombination, The Journal of Physical Chemistry, 96(22), p. 8697-8700, 1992.
[13]. Giovannetti R., The use of spectrophotometry UV-Vis for the study of porphyrins, In: Jamal Uddin (Eds.), Macro to Nano Spectroscopy, p. 87-108, 2012.
[14]. Pratiwi R., Ibrahim S., Tjahjono D. H., Reactivity and Stability of Metalloporphyrin Complex Formation: DFT and Experimental Study, Molecules, 25, p. 4221-4228, 2020.
[15]. Olteanu L., Ion R. M., Teodorescu S., Ştirbescu R. M., Dulamă I. D., Bucurică A. I., New metallo-porphyrins for solar energy conversion, Bulletin of the Transilvania University of Brasov, 10 (59), Series I, p. 47-54, 2017.
[16]. Aydin M., Akins D. L., Infrared and Raman Spectroscopic Characterization of Porphyrin and its Derivatives, In: Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, IntechOpen, 2016.
[17]. Georgescu R., Boscornea C., Calinescu I., State R., Raman IR and UV-Vis Spectroscopic Investigations of Some Substituted Phthalocyanines, Revista de Chimie (Journal of Chemistry), 66(10) p. 1554-1560, 2015.
[2]. Bian Y., Zhang Y., Ou Z., Jiang J., Chemistry of sandwich tetrapyrrole rare earth complexes, in Handbook of Porphyrin Science, Singapore: World Scientific Publishing Co. Pte. Ltd., p. 249-460, 2011.
[3]. Ion R.-M., Yilmaz I., Bekaroglu O., Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine, Journal of the Serbian Chemical Society, 64(7-8), p. 453-458, 1999.
[4]. Agirtas S., Ion R.-M., Bekaroglu O., Spectral study of the supramolecular assemblies porphyrins-phthalocyanines, Materials Science and Engineering: C, 7(2), p. 105-110, 1999.
[5]. Cook L. P., Brewer G., Wong-Ng W., Structural aspects of porphyrins for functional materials applications, Crystals, 7(7), p. 223-244, 2017.
[6]. Thompson S. J., Brennan M. R., Lee S. Y., Dong G., Synthesis and applications of rhodium porphyrin complexes, Chemical Society Reviews, 47(3), p. 929-981, 2018.
[7]. Suslick K. S., Rakow N. A., Kosal M. E., Chou J. H., The materials chemistry of porphyrins and metalloporphyrins, Journal of Porphyrins and Phthalocyanines, 4, p. 407-413, 2000.
[8]. de Toledo M., et al., Zinc phthalocyanine tetrasulfonateloaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications, Photodiagnosis and Photodynamic Therapy, 32, 2020.
[9]. Collman J. P., Garner J. M., Woo L. K., The chemistry of rhenium and tungsten porphyrin complexes in low oxidation states. Synthesis and characterization of rhenium and tungsten porphyrin dimers containing metal-metal multiple bonds, Journal of the American Chemical Society, 111 (21), p. 8141-8148, 1989.
[10]. Imahori H., Umeyama T., Kurotobi K., Takano Y., Selfassembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport, Chemical Communications, 48(34), p. 4032-4045, 2012.
[11]. Pop S. F., Ion R.-M., Corobea M. C., Raditoiu V., Spectral and thermal investigations of porphyrin and phthalocyanine nanomaterials, Journal of Optoelectronics and Advanced Materials, 13(7), p. 906-911, 2011.
[12]. Logunov S. L., Rodgers M. A. J., Self-assembled ion-pair complexes between porphyrins and bipyridinium species: picosecond dynamics of charge recombination, The Journal of Physical Chemistry, 96(22), p. 8697-8700, 1992.
[13]. Giovannetti R., The use of spectrophotometry UV-Vis for the study of porphyrins, In: Jamal Uddin (Eds.), Macro to Nano Spectroscopy, p. 87-108, 2012.
[14]. Pratiwi R., Ibrahim S., Tjahjono D. H., Reactivity and Stability of Metalloporphyrin Complex Formation: DFT and Experimental Study, Molecules, 25, p. 4221-4228, 2020.
[15]. Olteanu L., Ion R. M., Teodorescu S., Ştirbescu R. M., Dulamă I. D., Bucurică A. I., New metallo-porphyrins for solar energy conversion, Bulletin of the Transilvania University of Brasov, 10 (59), Series I, p. 47-54, 2017.
[16]. Aydin M., Akins D. L., Infrared and Raman Spectroscopic Characterization of Porphyrin and its Derivatives, In: Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, IntechOpen, 2016.
[17]. Georgescu R., Boscornea C., Calinescu I., State R., Raman IR and UV-Vis Spectroscopic Investigations of Some Substituted Phthalocyanines, Revista de Chimie (Journal of Chemistry), 66(10) p. 1554-1560, 2015.
Published
2021-03-15
How to Cite
1.
OLTEANU L, ION RM, TEODORESCU S, ŞTIRBESCU RM. Spectral Characterization of Macro-Heterocyclic Compound RhTMPyP / ZnTSPc. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2021 [cited 9Jan.2025];44(1):59-4. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/4324
Issue
Section
Articles