CFD Modeling of Aerodynamic Car Brake Cooling System
Keywords:
CFD, modeling, simulation, car brake, cooling
Abstract
The objective of this experimental research is to identify solutions for an optimal cooling of the disks. The aerothermal brake cooling calculation is used to determine how the brake cooling process evolves. The techniques for simulating the dynamics of the CFD fluid allow us to simulate the cooling of the brakes in air current and then to compare the results obtained in the wind tunnel.
Downloads
Download data is not yet available.
References
[1]. Silvestri L., CFD modeling in Industry 4.0: New perspectives for smart factories, Procedia Computer Science, vol. 180, p. 381-387, ISSN 1877-0509, 2021.
[2]. Wutz J., Waterkotte B., Heitmann K., Wucherpfennig T., Computational fluid dynamics (CFD) as a tool for industrial UF/DF tank optimization, Biochemical Engineering Journal, vol. 160, 107617, ISSN 1369-703X, 2020.
[3]. Moon H.-G., Park S., Ha K., Jeong J.-H., CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine, Appl. Sci. 2021, 11, 10764. https://doi.org/10.3390/app112210764, 2021.
[4]. Pavlin-Premrl D., Sethu R., Nemes A., Mohammadzadeh M., Monajemi S., Brian S., Campbell C. V., Computational Fluid Dynamics in Intracranial Atherosclerosis - Lessons from Cardiology: A Review of CFD in Intracranial Atherosclerosis, Journal of Stroke and Cerebrovascular Diseases, vol. 30, issue 10, 106009, ISSN 1052-3057, 2021.
[5]. Zobaer T., Sutradhar A., Modeling the effect of tumor compression on airflow dynamics in trachea using contact simulation and CFD analysis, Computers in Biology and Medicine, vol. 135, 104574, ISSN 0010-4825, 2021.
[6]. Perinajov R., Juffermans J., Westenberg J. M., Roel L. F., Palen Pieter J., Boogaard Hildo J., Lamb Sas a Kenjeres, Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas, Computers in Biology and Medicine, vol. 133, 104385, ISSN 0010-4825, 2021.
[7]. Shoeibi S., Kargarsharifabad H., Rahbar N., Ahmadi G., Reza M. S., Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis, Sustainable Energy Technologies and Assessments, vol. 49, 101728, ISSN 2213-1388, 2022.
[8]. Zhu X., Dai Y., Ma F., CFD modelling and numerical simulation on windage power loss of aeronautic high-speed spiral bevel gears, Simulation Modelling Practice and Theory, vol. 103, 102080, ISSN 1569-190X, 2020.
[9]. Fujii K., Progress and future prospects of CFD in aerospace-Wind tunnel and beyond, Progress in Aerospace Sciences, vol. 41, issue 6, p. 455-470, ISSN 0376-0421, 2005.
[10]. Xia H., Tucker P. G., Dawes W. N., Level sets for CFD in aerospace engineering, Progress in Aerospace Sciences, vol. 46, issue 7, p. 274-283, ISSN 0376-0421, 2010.
[11]. Wang C., Li F., Ding Z., Zhang L., Numerical Simulation of Hypersonic Flow Around an Aerospace Plane by Parallel RANS based CFD, Procedia Engineering, vol. 61, p. 23-27, ISSN 1877-7058, 2013.
[12]. Rizzi A., Jluckring J. M., Historical development and use of CFD for separated flow simulations relevant to military aircraft, Aerospace Science and Technology, vol. 117, 106940, ISSN 1270-9638, 2021.
[13]. Wang M., Wang Y., Tian W., Qiu S., Su G. H., Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Annals of Nuclear Energy, vol. 150, 107836, ISSN 0306-4549, 2021.
[14]. Seshaiah T., Vasu B., Vijaya K., Reddy K., Bridjesh P., Analysis on air craft winglet at different angles by using CFD simulation, Materials Today: Proceedings, ISSN 2214-7853, 2021.
[15]. Garcia-Ribeiro D., Flores-Mezarina J. A., Bravo-Mosquera P. D., Cerón-Muñoz H. D., Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a Horizontal Axis Wind Turbine, Sustainable Energy Technologies and Assessments, vol. 47, 101489, ISSN 2213-1388, 2021.
[16]. Zurin W. M., Talib R. J., Ismail N. I., Thermal Analysis on Motorcycle Disc Brake Geometry, International Conference on Applied Physics and Engineering (ICAPE2016) AIP Conf. Proc. 1875, 030022-1-030022-8, doi: 10.1063/1.4998393, 2017.
[2]. Wutz J., Waterkotte B., Heitmann K., Wucherpfennig T., Computational fluid dynamics (CFD) as a tool for industrial UF/DF tank optimization, Biochemical Engineering Journal, vol. 160, 107617, ISSN 1369-703X, 2020.
[3]. Moon H.-G., Park S., Ha K., Jeong J.-H., CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine, Appl. Sci. 2021, 11, 10764. https://doi.org/10.3390/app112210764, 2021.
[4]. Pavlin-Premrl D., Sethu R., Nemes A., Mohammadzadeh M., Monajemi S., Brian S., Campbell C. V., Computational Fluid Dynamics in Intracranial Atherosclerosis - Lessons from Cardiology: A Review of CFD in Intracranial Atherosclerosis, Journal of Stroke and Cerebrovascular Diseases, vol. 30, issue 10, 106009, ISSN 1052-3057, 2021.
[5]. Zobaer T., Sutradhar A., Modeling the effect of tumor compression on airflow dynamics in trachea using contact simulation and CFD analysis, Computers in Biology and Medicine, vol. 135, 104574, ISSN 0010-4825, 2021.
[6]. Perinajov R., Juffermans J., Westenberg J. M., Roel L. F., Palen Pieter J., Boogaard Hildo J., Lamb Sas a Kenjeres, Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas, Computers in Biology and Medicine, vol. 133, 104385, ISSN 0010-4825, 2021.
[7]. Shoeibi S., Kargarsharifabad H., Rahbar N., Ahmadi G., Reza M. S., Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis, Sustainable Energy Technologies and Assessments, vol. 49, 101728, ISSN 2213-1388, 2022.
[8]. Zhu X., Dai Y., Ma F., CFD modelling and numerical simulation on windage power loss of aeronautic high-speed spiral bevel gears, Simulation Modelling Practice and Theory, vol. 103, 102080, ISSN 1569-190X, 2020.
[9]. Fujii K., Progress and future prospects of CFD in aerospace-Wind tunnel and beyond, Progress in Aerospace Sciences, vol. 41, issue 6, p. 455-470, ISSN 0376-0421, 2005.
[10]. Xia H., Tucker P. G., Dawes W. N., Level sets for CFD in aerospace engineering, Progress in Aerospace Sciences, vol. 46, issue 7, p. 274-283, ISSN 0376-0421, 2010.
[11]. Wang C., Li F., Ding Z., Zhang L., Numerical Simulation of Hypersonic Flow Around an Aerospace Plane by Parallel RANS based CFD, Procedia Engineering, vol. 61, p. 23-27, ISSN 1877-7058, 2013.
[12]. Rizzi A., Jluckring J. M., Historical development and use of CFD for separated flow simulations relevant to military aircraft, Aerospace Science and Technology, vol. 117, 106940, ISSN 1270-9638, 2021.
[13]. Wang M., Wang Y., Tian W., Qiu S., Su G. H., Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Annals of Nuclear Energy, vol. 150, 107836, ISSN 0306-4549, 2021.
[14]. Seshaiah T., Vasu B., Vijaya K., Reddy K., Bridjesh P., Analysis on air craft winglet at different angles by using CFD simulation, Materials Today: Proceedings, ISSN 2214-7853, 2021.
[15]. Garcia-Ribeiro D., Flores-Mezarina J. A., Bravo-Mosquera P. D., Cerón-Muñoz H. D., Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a Horizontal Axis Wind Turbine, Sustainable Energy Technologies and Assessments, vol. 47, 101489, ISSN 2213-1388, 2021.
[16]. Zurin W. M., Talib R. J., Ismail N. I., Thermal Analysis on Motorcycle Disc Brake Geometry, International Conference on Applied Physics and Engineering (ICAPE2016) AIP Conf. Proc. 1875, 030022-1-030022-8, doi: 10.1063/1.4998393, 2017.
Published
2021-12-15
How to Cite
1.
MARIN F-B, MARIN M. CFD Modeling of Aerodynamic Car Brake Cooling System. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2021 [cited 28Jan.2025];44(4):44-7. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/4976
Issue
Section
Articles