Effect of the Fiber Orientation of Glass Fiber Reinforced Polymer Composites on Mechanical Properties

  • Rodica CHIHAI (PEȚU) “Dunarea de Jos” University of Galati, Research and Development Centre for Thermoset Matrix Composites, Cross-Border Faculty, Galati, Romania
  • Claudia UNGUREANU “Dunarea de Jos” University of Galati, Research and Development Centre for Thermoset Matrix Composites, Cross-Border Faculty, Galati, Romania
  • Vasile BRIA “Dunarea de Jos” University of Galati, Research and Development Centre for Thermoset Matrix Composites, Cross-Border Faculty, Galati, Romania
Keywords: glass fiber, orientation, mechanical properties, epoxy resin

Abstract

Fiber reinforced polymer (FRP) composites possess excellent specific strength, specific stiffness and controlled anisotropy for which these are extensively used in various engineering applications, like automobile industries, aerospace industries, marine industries, space industries, electronics industries and many more. Glass fibers (GF), carbon fibers (CF) and aramid fibers (AF) are common reinforcements for polymer matrix composites (PMCs). High mechanical properties and wear resistance behaviour of glass fiber reinforced composites are the premises for the current experimental research on the effect of fiber orientation on the tensile strength of the polymeric composite materials. The glass fiber reinforced epoxy resin composite was prepared by wet lay-up method, followed by thermal treatment.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Watt W., Perov B. V., Handbook of Composites, vol. 1, Strong Fibres, 1985.
[2]. Sherif G., Chukov D., Tcherdyntsev V., Torokhov V., Effect of formation route on the mechanical properties of the polyethersulfone composites reinforced with glass fibers, Polymers, 11 (8), 1364, 2019.
[3]. Vallittu P. K., Närhi T. O., Hupa L., Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants, Dental Materials, 31 (4), p. 371-381, 2015.
[4]. Mohammed L., Ansari M. N., Pua G., Jawaid M., Islam M. S., A review on natural fiber reinforced polymer composite and its applications, International Journal of Polymer Science, 2015.
[5]. Neşer G., Polymer based composites in marine use: history and future trends, Procedia engineering, 194, p. 19-24, 2017.
[6]. Ahmad I., Baharum A., Abdullah I., Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiberthermoplastic natural rubber (TPNR) composites, Journal of reinforced plastics and composites, 25 (9), p. 957-965, 2006.
[7]. Zaini N. A. M., Ismail H., Rusli A., Tensile, thermal, flammability and morphological properties of sepiolite filled ethylene propylene diene monomer (EDPM) rubber composites, Iranian Polymer Journal, 27 (5), p. 287-296, 2018.
[8]. Agarwal B. D., Broutman L. J., Chandrashekhara K., Analysis and performance of fiber composites, John Wiley & Sons. Inc, New York, NY, 1990.
[9]. Ahivhare P. R., Bhalavi T., Natural fibre reinforced polymer composite materials - A review, Polym. Renew. Resource, 8, p. 71-78, 2017.
[10]. McNally D., Short fiber orientation and its effects on the properties of thermoplastic composite materials, 1977.
[11]. Nciri M., Notta-Cuvier D., Lauro F., Chaari F., Zouari B., Maalej Y., A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations, In EPJ Web of Conferences (vol. 94, p. 04008), EDP Sciences, 2015.
[12]. Notta-Cuvier D., Nciri M., Lauro F., Delille R., Chaari F., Robache F., Maalej Y., Coupled influence of strain rate and heterogeneous fibre orientation on the mechanical behaviour of short-glass-fibre reinforced polypropylene, Mechanics of Materials, 100, p. 186-197, 2016.
[13]. Wentzel D., Sevostianov I., International Journal of Engineering Science, 130, p. 129-135, https://doi. org/10.1016/jijengsci.2018.05.012, 2018.
[14]. Forintos N., Czigány T., Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review, Composites Part B: Engineering, doi: 10.1016/j.compositesb.2018.10.098, 2018.
[15]. Peters S.-T., Handbook of Composites, 2, Ed. Green Gate Publishing Services, Tonbridge, England, p. 1-1052, ISBN 0-412-54020-7, 1998.
[16]. Ma R., Li W., Huang M., Feng M., Liu X., The reinforcing effects of dendritic short carbon fibers for rigid polyurethane composites, Composites Science and Technology, 170, p. 128-134, 2019.
[17]. Alam P., Mamalis D., Robert C., Floreani C., Brádaigh C. M. Ó., The fatigue of carbon fibre reinforced plastics-A review, Composites Part B: Engineering, 166, p. 555-579, 2019.
[18]. Morampudi P., Namala K. K., Gajjela Y. K., Barath M., Prudhvi G., Review on glass fiber reinforced polymer composites, Materials Today: Proceedings, 43, p. 314-319, doi: 10.1016/j.matpr.2020.11.669, 2021.
[19]. Sahu N. P., Khande D. K., Patel G. C., Bohidar S. K., Sen P. K., Study on aramid fibre and comparison with other composite materials, International Journal for Innovative Research in Science & Technology, 1 (7), p. 303-306, 2014.
[20]. Vedrtnam A., Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite, Composites Part B: Engineering, 157, p. 305-321, 2019.
[21]. ***, http://www.polydis.ro/wpcontent/uploads/2014/08/Epiphen-4020.pdf.
[22]. Jin F.-L., Li X., Park S.-J., Synthesis and application of epoxy resins: A review, Journal of Industrial and Engineering Chemistry, 29, 1-11, doi: 10.1016/j.jiec.2015.03.026, 2015.
[23]. Shekar K. C., Singaravel B., Prasad S. D., Venkateshwarlu N., Effect of Fiber Orientation on the Flexural Properties of Glass Fiber Reinforced, Epoxy- Matrix Composite, Materials Science Forum, 969, p. 502-507, doi: 10.4028/www.scientific.net/msf.969.502, 2019.
[24]. Prasanth S. I., Kesavan K., Kiran P., Sivaguru M., Sudharsan R., Vijayanandh R., Advanced structural analysis on e-glass fiber reinforced with polymer for enhancing the mechanical properties by optimizing the orientation of fiber, Proceedings of advanced material, Engineering & Technology, doi: 10.1063/5.0019378, 2020.
[25]. Chen R. S., Muhammad Y. H., Ahmad S., Physical, mechanical and environmental stress cracking characteristics of epoxy/glass fiber composites: Effect of matrix/fiber modification and fiber loading, Polymer Testing, 96, 107088, 2021.
[26]. Bahl S., Fiber reinforced metal matrix composites - a review, Materials Today: Proceedings, doi: 10.1016/j.matpr.2020.07.423, 2020.
[27]. Xian G., Guo R., Li C., Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite, Composite Structures, 281, 115060, 2022.
[28]. Babazadeh J., Rahmani K., Hashemi S. J., Sadooghi A., Effect of glass, carbon, and kevlar fibers on mechanical properties for polymeric composite tubes produced by a unidirectional winding method, Materials Research Express, 8 (4), 045301, 2021.
[29]. Wang C., Zhang Y., Yi Y., Lai D., Yang J., Wang W., Thermal, morphological and mechanical properties of glass fiber reinforced star‐branched polyamide 6, Polymer Composites, 2022.
Published
2022-06-15
How to Cite
1.
CHIHAI (PEȚU) R, UNGUREANU C, BRIA V. Effect of the Fiber Orientation of Glass Fiber Reinforced Polymer Composites on Mechanical Properties. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2022 [cited 15Jan.2025];45(2):16-1. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/5381
Section
Articles