Vitrification of Iron Oxide Rich Sludge Resulted from the Groundwater Treatment as New Glass Ceramic Materials
Keywords:
glass wastes, sludge waste, vitrification, glass ceramics
Abstract
This paper offers a new solution to vitrify the sludge resulted from washing the filters used for iron removal phase of the groundwater treatment process. The new glass ceramic materials, obtained after heat treatment at three different temperatures: 800, 900 and 1000 oC were characterized in terms of dimensional stability after firing, apparent density and porosity, hydrolytic stability and iron ions immobilization capacity. The effect of the calcined sludge amount upon the mentioned properties was analysed.
Downloads
Download data is not yet available.
References
[1]. Samadi M., Huseien G. F., Mohammadhosseini H., Lee H. S., Abdul Shukor Lim N. H., Md Tahir M., Alyousef R., Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars, Journal of Cleaner Production, 266, 121825, 2020.
[2]. Ogundairo T. O., Adegoke D. D., Akinwumi I. I., Olofinnade O. M., Sustainable use of recycled waste glass as an alternative material for building construction – A review, IOP Conf. Series: Materials Science and Engineering, 640, 012073, 2019.
[3]. García Guerrero J., Rodríguez Reséndiz J., Rodríguez Reséndiz H., Álvarez-Alvarado J. M., Rodríguez Abreo O., Sustainable Glass Recycling Culture-Based on Semi-Automatic Glass Bottle Cutter Prototype, Sustainability 13, 6405, 2021.
[4]. Kuo-Yi L., User experience-based product design for smart production to empower industry 4.0 in the glass recycling circular economy, Computers & Industrial Engineering, 125, p. 729-738, 2018.
[5]. Ibrahim S., Meawad A., Assessment of waste packaging glass bottles as supplementary cementitious materials, Construction and Building Materials, 182, p. 451-458, 2018.
[6]. Larsen A. W., Merrild H., Christensen T. H., Recycling of glass: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 27(8), p. 754-762, 2009.
[7]. Testa M., Malandrino O., Sessa M. R., Supino S., Sica D., Long-term sustainability from the perspective of cullet recycling in the container glass industry: Evidence from Italy, Sustainability, 9(10), 1752, 2017.
[8]. Sudharsan N., Palanisamy T., Yaragal S. C., Environmental sustainability of waste glass as a valuable construction material-A critical review, Ecology, Environment and Conservation, 24, p. S331-S338, 2018.
[9]. Hamzah K. H., Huseien G. F., Asaad M. A., Georgescu D. P., Ghoshal S. K., Alrshoudi F., Effect of waste glass bottlesderived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics, Case Studies in Construction Materials, 15, e00775, 2021.
[10]. Sarkis C. J. L., Raich O. M., Mestre J. L. Z., Assessment of the temperature of waterproofing membrane when a recycled crushed glass finish layer is used on flat roofs to protect from sun radiance, Energy Procedia, 115, p. 451-462, 2017.
[11]. Gol F., Yilmaz A., Kacar E., Simsek S., Sarıtas Z. G., Ture C., Arslan M., Bekmezci M., Burhan H., Sen F., Reuse of glass waste in the manufacture of ceramic tableware glazes, Ceramics International, 47, 15, 2021.
[12]. Silva R. V., de Brito J., Lye C. Q., Dhir R. K., The role of glass waste in the production of ceramic-based products and other applications: A review, Journal of Cleaner Production, 167, p. 346-364, 2017.
[13]. Paknahad E., Grosvenor A. P., Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation, Solid State Sciences, 74, p. 109-117, 2017.
[14]. Luhar S., Cheng T. W., Nicolaides D., Luhar I., Panias D., Sakkas K., Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review, Construction and Building Materials, 222, p. 673-687, 2019.
[15]. Karuppannan Gopalraj S., Kärki T., A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis, SN Applied Sciences, 2, 433, 2020.
[16]. Stochero N. P., de Souza Chami J. O. R., Souza M. T., de Moraes E. G., Novaes de Oliveira A. P., Green Glass Foams from Wastes Designed for Thermal Insulation, Waste and Biomass Valorization, 12, p. 1609-1620, 2021.
[17]. Taurino R., Lancellotti I., Barbieri L., Leonelli C., Glass-Ceramic Foams from Borosilicate Glass Waste, International Journal of Applied Glass Science, 5, p. 136-145, 2014.
[18]. Stabile P., Bello M., Petrelli M., Paris E., Carroll M. R., Vitrification treatment of municipal solid waste bottom ash, Waste Management, 95, p. 250-258, 2019.
[19]. Pei S. L., Chen T. L., Pan S. Y., Yang Y. L., Sun Z. H., Li Y. J., Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash, Journal of Hazardous Materials, 398, 122959, 2020.
[20]. Sharifikolouei E., Baino F., Salvo M., Tommasi T., Pirone R., Fino D., Ferraris M., Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions, Ceramics International, 47, p. 7738-7744, 2021.
[21]. Stoch P., Ciecińska M., Stoch A., Kuterasiński Ł., Krakowiak I., Immobilization of hospital waste incineration ashes in glass-ceramic composites, Ceramics International, 44, p. 728-734, 2018.
[22]. Zhang Y., Kong L., Ionescu M., Gregg D. J., Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review, Journal of the European Ceramic Society, 42, p. 1852-1876, 2022.
[23]. ***, Extraction procedure toxicity test in: Stabilization/Solidification of CERCLA and RCRA Wastes, US EPA625/6-89/022, US EPA, Cincinnati, Ohio, 1986.
[2]. Ogundairo T. O., Adegoke D. D., Akinwumi I. I., Olofinnade O. M., Sustainable use of recycled waste glass as an alternative material for building construction – A review, IOP Conf. Series: Materials Science and Engineering, 640, 012073, 2019.
[3]. García Guerrero J., Rodríguez Reséndiz J., Rodríguez Reséndiz H., Álvarez-Alvarado J. M., Rodríguez Abreo O., Sustainable Glass Recycling Culture-Based on Semi-Automatic Glass Bottle Cutter Prototype, Sustainability 13, 6405, 2021.
[4]. Kuo-Yi L., User experience-based product design for smart production to empower industry 4.0 in the glass recycling circular economy, Computers & Industrial Engineering, 125, p. 729-738, 2018.
[5]. Ibrahim S., Meawad A., Assessment of waste packaging glass bottles as supplementary cementitious materials, Construction and Building Materials, 182, p. 451-458, 2018.
[6]. Larsen A. W., Merrild H., Christensen T. H., Recycling of glass: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 27(8), p. 754-762, 2009.
[7]. Testa M., Malandrino O., Sessa M. R., Supino S., Sica D., Long-term sustainability from the perspective of cullet recycling in the container glass industry: Evidence from Italy, Sustainability, 9(10), 1752, 2017.
[8]. Sudharsan N., Palanisamy T., Yaragal S. C., Environmental sustainability of waste glass as a valuable construction material-A critical review, Ecology, Environment and Conservation, 24, p. S331-S338, 2018.
[9]. Hamzah K. H., Huseien G. F., Asaad M. A., Georgescu D. P., Ghoshal S. K., Alrshoudi F., Effect of waste glass bottlesderived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics, Case Studies in Construction Materials, 15, e00775, 2021.
[10]. Sarkis C. J. L., Raich O. M., Mestre J. L. Z., Assessment of the temperature of waterproofing membrane when a recycled crushed glass finish layer is used on flat roofs to protect from sun radiance, Energy Procedia, 115, p. 451-462, 2017.
[11]. Gol F., Yilmaz A., Kacar E., Simsek S., Sarıtas Z. G., Ture C., Arslan M., Bekmezci M., Burhan H., Sen F., Reuse of glass waste in the manufacture of ceramic tableware glazes, Ceramics International, 47, 15, 2021.
[12]. Silva R. V., de Brito J., Lye C. Q., Dhir R. K., The role of glass waste in the production of ceramic-based products and other applications: A review, Journal of Cleaner Production, 167, p. 346-364, 2017.
[13]. Paknahad E., Grosvenor A. P., Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation, Solid State Sciences, 74, p. 109-117, 2017.
[14]. Luhar S., Cheng T. W., Nicolaides D., Luhar I., Panias D., Sakkas K., Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review, Construction and Building Materials, 222, p. 673-687, 2019.
[15]. Karuppannan Gopalraj S., Kärki T., A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis, SN Applied Sciences, 2, 433, 2020.
[16]. Stochero N. P., de Souza Chami J. O. R., Souza M. T., de Moraes E. G., Novaes de Oliveira A. P., Green Glass Foams from Wastes Designed for Thermal Insulation, Waste and Biomass Valorization, 12, p. 1609-1620, 2021.
[17]. Taurino R., Lancellotti I., Barbieri L., Leonelli C., Glass-Ceramic Foams from Borosilicate Glass Waste, International Journal of Applied Glass Science, 5, p. 136-145, 2014.
[18]. Stabile P., Bello M., Petrelli M., Paris E., Carroll M. R., Vitrification treatment of municipal solid waste bottom ash, Waste Management, 95, p. 250-258, 2019.
[19]. Pei S. L., Chen T. L., Pan S. Y., Yang Y. L., Sun Z. H., Li Y. J., Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash, Journal of Hazardous Materials, 398, 122959, 2020.
[20]. Sharifikolouei E., Baino F., Salvo M., Tommasi T., Pirone R., Fino D., Ferraris M., Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions, Ceramics International, 47, p. 7738-7744, 2021.
[21]. Stoch P., Ciecińska M., Stoch A., Kuterasiński Ł., Krakowiak I., Immobilization of hospital waste incineration ashes in glass-ceramic composites, Ceramics International, 44, p. 728-734, 2018.
[22]. Zhang Y., Kong L., Ionescu M., Gregg D. J., Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review, Journal of the European Ceramic Society, 42, p. 1852-1876, 2022.
[23]. ***, Extraction procedure toxicity test in: Stabilization/Solidification of CERCLA and RCRA Wastes, US EPA625/6-89/022, US EPA, Cincinnati, Ohio, 1986.
Published
2022-09-15
How to Cite
1.
VANCEA C, MOSOARCA G, POPA S, BORAN S. Vitrification of Iron Oxide Rich Sludge Resulted from the Groundwater Treatment as New Glass Ceramic Materials. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Sep.2022 [cited 24Dec.2024];45(3):11-5. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/5497
Issue
Section
Articles