Green Synthesis of Metal Nanoparticles using Microalgae: A Review
Abstract
Nanometallic materials are metals and alloys that form nanocrystalline grains with particle size of about 5 to100 nm. In materials science, “green synthesis” has become a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials such as metal oxides, hybrids, and bio-inspired materials. Nowadays, a wide range of physico-chemical methods are used for the synthesis of nanoparticles. Green synthesis is found to be superior over physical and hemical method as it is economically feasible, environmentally friendly, scaled up for massscale production without any complexity. Several biological approaches, including the utilization of plant extracts, enzymes, bacteria, fungi, and algae, are being studied in order to enable a more environmentally sound synthesis of nanoparticles. Because these techniques are regarded as safe and environmentally responsible for the production of nanomaterials as an alternative to conventional methods, the development of green methods for the synthesis of nanoparticles is developing into a significant area of nanotechnology.
Downloads
References
[2]. Fawcett D., Verduin J. J., Shah M., Sharma S. B., Poinern G. E. J., A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses, Journal of Nanoscience, 2017.
[3]. Lewis Oscar F., Vismaya S., Arunkumar M., Thajuddin N., Dhanasekaran D., Nithya C., Algal Nanoparticles: Synthesis and Biotechnological Potentials, Algae - Organisms for Imminent Biotechnology, p. 157-182, 2016.
[4]. Mukherjee A., Sarkar D., Sasmal S., A review of green synthesis of metal nanoparticles using algae, Frontiers in Microbiology, 12, 2021.
[5]. Ponnuchamy K., Jacob J. A., Metal nanoparticles from marine seaweeds – a review, Nanotechnology Reviews, 5(6), p. 589-600, 2016.
[6]. Chaudhary R., Nawaz K., Khan A. K., Hano C., Abbasi B. H., Anjum S., An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications, Biomolecules, 10(11), 1498, 2020.
[7]. Mustapha T., Misni N., Ithnin N. R., Daskum A. M., Unyah N. Z., A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications, International Journal of Environmental Research and Public Health, 19(2), 674, 2022.
[8]. Ahmed S., Ahmad M., Swami B. L., Ikram S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, Journal of advanced research, 7(1), p. 17-28, 2016.
[9]. Bahrulolum H., Nooraei S., Javanshir N., Tarrahimofrad H., Mirbagheri V. S., Easton A. J., Ahmadian G., Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector, Journal of Nanobiotechnology, 19(1), p. 1-26, 2021.
[10]. Narala R. R., Garg S., Sharma K. K., Thomas-Hall S. R., Deme M., Li Y., Schenk P. M., Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a twostage hybrid system, Frontiers in Energy Research, 4, 29, 2016.
[11]. Uzair B., Liaqat A., Iqbal H., Menaa B., Razzaq A., Thiripuranathar G., Menaa F., Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine, Bioengineering, 7(4), 129, 2020.
[12]. Almatroudi A., Silver nanoparticles: Synthesis, characterisation and biomedical applications, Open life sciences, 15(1), p. 819-839, 2020.
[13]. Chokshi K., Pancha I., Ghosh T., Paliwal C., Maurya R., Ghosh A., Mishra S., Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus, RSC advances, 6(76), p. 72269-72274, 2016.
[14]. Da Silva Ferreira V., Conz Ferreira M. E., Lima L. M. T., Frasés S., de Souza W., Sant’Anna C., Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria, Enzyme and Microbial Technology, 97, p. 114-121, 2017.
[15]. Mukherjee A., Sarkar D., Sasmal S., A review of green synthesis of metal nanoparticles using algae, Frontiers in Microbiology, 12, 2021.
[16]. Mohseniazar M., Barin M., Zarredar H., Alizadeh S., Shanehbandi D., Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles, BioImpacts: BI, 1(3), 149, 2011.
[17]. Chugh D., Viswamalya V. S., Das B., Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process, Journal of Genetic Engineering and Biotechnology, 19(1), p. 1-21, 2021.
[18]. Mubarak Ali D., Arunkumar J., Nag K. H., Sheik Syed Ishack K. A., Baldev E., Pandiaraj D., Thajuddin N., Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms - Comparative studies on synthesis and its application on biolabeling. Colloids and Surfaces B: Biointerfaces, 103, p. 166-173, 2013.
[19]. Marzieh H. S., Shahbazizadeh S., Khosravi-Darani K., Reza M. M., Spirulina paltensis: Food and function, Current Nutrition & Food Science, 9, p. 189-193, 2013.
[20]. Zaid A. A., Hammad D. M., Sharaf E. M., Antioxidant and anticancer activity of Spirulina platensis water extracts, International Journal of Pharmacology, 11, p. 846-51, 2015.
[21]. Pathak J., Ahmed H., Singh D. K., Pandey A., Singh S. P., Sinha R. P., Recent developments in green synthesis of metal nanoparticles utilizing cyanobacterial cell factories, Nanomaterials in Plants, Algae and Microorganisms, p. 237-65, 2019.
[22]. Narayanan K. B., Sakthivel N., Biological synthesis of metal nanoparticles by microbes, Advances in colloid and interface science, 156, p. 1-13, 2010.
[23]. Arya A., Chundawat T. S., Metal nanoparticles from algae: A green approach for the synthesis, characterization and their biological activity, Nanoscience & Nanotechnology-Asia, 10(3), p. 185-202, 2020.
[24]. Chaudhary R., Nawaz K., Khan A. K., Hano C., Abbasi B. H., Anjum S., An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications, Biomolecules, 10(11), 1498, 2020.
[25]. Venugopal K., Rather H. A., Rajagopal K., Shanthi M. P., Sheriff K., Illiyas M., Maaza M., Synthesis of silver nanoparticles (AgNPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum, Journal of Photochemistry and Photobiology B: Biology, 167, p. 282-289, 2017.
[26]. Mur R., Skulberg O. M., Utkilen H., Cyanobacteria in The Environment, 1999.
[27]. Khanna P., Kaur A., Goyal D., Algae-based metallic nanoparticles: Synthesis, characterization and applications, Journal of microbiological methods, 163, 105656, 2019.
[28]. Elangovan K., Elumalai D., Anupriya S., Shenbhagaraman R., Kaleena P. K., Murugesan K., Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities, Journal of Photochemistry and Photobiology B: Biology, 151, p. 118-124, 2015.
[29]. Arivazhagan S., Velmurugan B., Bhuvaneswari V., Nagini S., Effects of aqueous extracts of garlic (Allium sativum) and neem (Azadirachta indica) leaf on hepatic and blood oxidant-antioxidant status during experimental gastric carcinogenesis, Journal of Medicinal Food, 7(3), p. 334-339, 2004.
[30]. Dikshit P. K., Kumar J., Das A. K., Sadhu S., Sharma S., Singh S., Kim B. S., Green synthesis of metallic nanoparticles: Applications and limitations, Catalysts, 11(8), 902, 2021.