Mathematical Modeling of the CuSn12 Alloy Sintering Process

  • Cristian ŞTEFĂNESCU “Dunarea de Jos” University of Galati, Romania
  • Petrică ALEXANDRU “Dunarea de Jos” University of Galati, Romania
  • Gheorghe GURĂU “Dunarea de Jos” University of Galati, Romania
Keywords: CuSn12 powder, sintering intergranular bridge, bronze powder filter, mathematical model

Abstract

The purpose of this study is to use statistical methods, namely active experimental regression analysis, to forecast the size of the intergranular sintering bridge by mathematically modeling the sintering process as it is applied to the CuSn12 alloy powder. A first-order linear design method was used to characterize the correlation between the intergranular sintering bridge and the sintering parameters (temperature and sintering time). Using the free casting of the powder into graphite shapes, nine experiments were scheduled. Following sintering, the intergranular sintering bridge was evaluated metallographically using image analysis software. In order to optimize the sintering process, a regression equation has been established by mathematical modeling that predicts the size of the intergranular bridge with sintering parameters (temperature and time) with a high probability (>95%), within the experimental limits.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. ***, Friction Lubrication and Wear Technology, ASM Handbook, vol. 18, p. 801-811, 1992.
[2]. ***, Powder Metal Technologies and Applications, ASM Hand Book, vol. 7, p. 343-348, 2572-2599, 1998.
[3]. Suresh A. L., Mahendran S. K. R., Krupashankara M. S., Influence of Powder Composition & Morphology on Green Density for Powder Metallurgy Processes, Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 01, p. 18629-18634, doi: 10.15680/ijirset.2015.0401037, 2015.
[4]. Sethi G., Upadhyaya A., Agrawal D., Microwave and conventional sintering of premixed and prealloyed Cu-12Sn Bronze, Sci. Sinter., vol. 35, no. 2, p. 49-65, doi: 10.2298/SOS0302049S, 2003.
[5]. Keraghel F., Loucif K., Delplancke M. P., Study of bronze porous alloy Cu-Sn worked out by metallugy of the powders, Phys. Procedia, vol. 21, p. 152-158, doi: 10.1016/j.phpro.2011.10.023, 2011.
[6]. Jabur A. S., Effect of powder metallurgy conditions on the properties of porous bronze, Powder Technol., vol. 237, p. 477-483, doi: 10.1016/j.powtec.2012.12.027, 2013.
[7]. Nakrod N., McCuiston R., Auechalitanukul C., Effect of compaction pressure and sintering time on the properties of sintered Cu-10Sn bronze, Key Eng. Mater., vol. 751 KEM, p. 37-41, doi: 10.4028/www.scientific.net/KEM.751.37, 2017.
[8]. Cojocaru M. O., Druga L. N., Dragomir D., Tudose F., Porosity of sintered tin bronzes, UPB Sci. Bull. Ser. B Chem. Mater. Sci., vol. 79, no. 1, p. 163-172, 2017.
[9]. Alexandru P., Ştefănescu C., Experimental Determination of the Kuczynski Equation for the Case of CuSn12 Alloy Sintering, Ann. “Dunarea Jos” Univ. Galati. Fascicle IX, Metall. Mater. Sci., vol. 45, no. 4, p. 81-86, doi: 10.35219/mms.2022.4.13, 2022.
[10]. Demian C., Nicoară M., Vida-Simiti I., Esenţial în Metalurgia Pulberilor, Cluj-Napoca, U.T. Press, 2009.
[11]. Taloi D., Florian E., Bratu C., Berceanu E., Optimizarea proceselor metalurgice, Bucureşti, Editura Didactică și Pedagogică, 1983.
Published
2024-03-15
How to Cite
1.
ŞTEFĂNESCU C, ALEXANDRU P, GURĂU G. Mathematical Modeling of the CuSn12 Alloy Sintering Process. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2024 [cited 3Dec.2024];47(1):49-1. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/7016
Section
Articles