Assessment Using Numerical Analysis of the Behaviour of a Two Fingers Gripping Mechanism

  • Ionuț LAMBRESCU Universitatea Petrol-Gaze din Ploieşti
  • Mihai Bogdan ROTH Universitatea Petrol-Gaze din Ploieşti
Keywords: Gripping mechanisms, Grippers, Finite element, Motion analysis

Abstract

An important issue in robotics is evaluating the force necessary to firmly grip objects. This can be done experimentally, or, as a more cost-effective approach, through numerical analysis. The results obtained through this method, although less precise, can offer a good assessment of the way a gripping mechanism behaves. The authors propose a comparative numerical analysis of a two-finger gripper, using a motion analysis performed in Siemens NX and a transient structural  analysis conducted in Ansys. Both methods aim to capture the moment when the grasped object starts to slip. This moment marks the point at which the gripping is no longer reliable and provides insights into the reliability of the gripping  mechanism. To assess the influence of the geometry of the gripping area, as well as the impact of the shape of the grasped object or the pair of materials (object and gripper), several analyses were performed in both Siemens NX and Ansys  Workbench.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Dharbaneshwer S. J., Subramanian S. J., Kohlhoff K., Robotic grasp analysis using deformable solid mechanics, Meccanica, vol. 54, p. 1767-1784, 2019.
[2]. Turrell Y. N., Li F.-X., Wing A. M., Estimating the minimum grip force required when grasping objects under impulsive loading conditions, Behavior Research Methods, Instruments, & Computers, vol. 33(1), p. 38-45, 2001.
[3]. Sathishkumar A., et al., Design and Analysis of a Multi Fingered Gripper for Grasping Irregular Objects, International Research Journal of Engineering and Technology (IRJET), vol. 04(3), 2017.
[4]. Hao Y., et al., Modeling and experiments of a soft robotic gripper in amphibious environments, International Journal of Advanced Robotic Systems, May-June, p. 1-12, DOI: 10.1177/1729881417707148, 2017.
[5]. Miller A. T., Allen P. K., Examples of 3D Grasp Quality Computations, Proceedings of the IEEE International Conference on Robotics & Automation, Detroit, Michigan, May 1999.
[6]. Lu Q., et al., An Origami-Inspired Variable Friction Surface for Increasing the Dexterity of Robotic Grippers, IEEE Robotics and Automation Letters, vol. 5(2), p.2538-2545, DOI: 10.1109/LRA.2020.2972833, 2020.
[7]. Sahbani A., El-Khoury S., Bidaud P., An overview of 3D object grasp synthesis algorithms, Robotics and Autonomous Systems, vol. 60 (3), p. 326-336, 2012.
[8]. Ferrari C., Canny J., Planning Optimal Grasp, Proceedings IEEE International Conference on Robotics and Automation, DOI: 10.1109/ROBOT.1992.219918, May 1992.
[9]. Romeo R. A., et al., Slippage Detection with Piezoresistive Tactile Sensors, Sensors, vol. 17(8), p. 1844, DOI: 10.3390/s17081844, 2017.
[10]. Hu Al., Peachey B., Redesigning an Experiment to Determine the Coefficient of Friction, Journal of Emerging Investigators, June 2016.
[11]. Kapucu S., A simple experiment to measure the maximum coefficient of static friction with a smartphone, Phys. Educ. 53, 053006 (3pp), 2018.
[12]. Dickey R. D. I., Jackson R. L., Flowers G. T., Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model, Journal of Tribology, vol. 133 (3), DOI: 10.1115/1.4004338, 2011.
[13]. Lee C-H., Polycarpou A. A., Static Friction Experiments and Verification of an Improved Elastic-Plastic Model Including Roughness Effects, Journal of Tribology, vol. 129(4), DOI: 10.1115/1.2768074, 2007.
[14]. Metcalfe A., et al., Statistics in Engineering: With Examples in MATLAB® and R, Second Edition, Chapman and Hall/CRC, New York, 2019.
[15]. Groß T., Technische Produktdokumentation: Detaillierungsfunktionen mit Siemens NX, 978-3-658-28266-0, Springer Fachmedien Wiesbaden, Springer Vieweg, 2020.
[16]. Tickoo S., Siemens NX 12.0 for Designers, 11th Edition, 1640570128, 9781640570122, CADCIM Technologies, 2018.
[17]. ***, ANSYS Inc. Theory Reference, Canonsburg: SAS IP Inc.
Published
2025-06-15
How to Cite
1.
LAMBRESCU I, ROTH MB. Assessment Using Numerical Analysis of the Behaviour of a Two Fingers Gripping Mechanism. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2025 [cited 2Oct.2025];48(2):14-. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/9235
Section
Articles