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ABSTRACT 

This paper presents the results of simulating the air flow as jet attached to a Coanda profile. 

The simulation on a Reynolds Averaged Navier-Stokes (RANS) model based on the concept of 

turbulent viscosity could give valuable information on the behavior of such a system if the 

appropriate limit and material conditions are imposed by the designers. The model proposed by 

the authors could simulate with sufficient accuracy the process of jet attaching on the Coanda 

profile. The jet is accelerated across the upside of the Coanda airfoil and, as a consequence of 

Bernoulli’s law, the static pressure drops and for thinner jets and higher velocities, the jet does 

not detach from the surface of the Coanda airfoil. 
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1. INTRODUCTION 

 

Unfortunately, existing research about the flow of 

gas jets partially limited by a surface with curved 

profile [1], [2], [3] or the flow of gas into Coanda 

nozzles, only refers to straight flows [4]. Radial jets 

limited by a curved surface are practically not studied 

at all. The mechanics of radial jet attachment to a 

curved surface are not clear, and the way in which 

the geometrical parameters of the nozzle and the flow 

dynamics influence the size of the aerodynamical 

forces created by the Coanda nozzle or profile is not 

deeply studied. The specialized literature clearly 

highlights that the increase in the radial jet flow 

speed leads to an increase of the lift force. 

As a result of documentation analysis, the 

elaboration of a model facilitates the selection of 

parameters for a laboratory study, which allows for a 

flow simulation for radial jets produced by Coanda 

nozzles (profiles), in order to establish the influence 

of certain geometrical parameters of the studied 

nozzle, for high flow speeds. 

 

2. THEORETICAL BACKGROUND 

 

The closing of the Navier-Stokes mediated 

Reynolds equations system requires the modeling of 

the Reynolds tensions ' 'i ju u  which are used in 

the impulse and turbulent heat flux equations and 

'' ju H , which are used in the energy equation, 

through a turbulence model [5]. Currently, there is no 

turbulence model acceptable for any turbulent 

movement, because all known models present limits, 

which narrow the range of their applicability domain 

[6], [7]. Consequently, there are turbulence models 

with zero differential equations (also called algebric 

models, which are not used anymore), models with 

one and with two equations (which are the most used, 

presently) and so on. To note that the most complex 
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model is comprised of 12 differential equations with 

partial derivatives [8], [9]. 

Inside a turbulent boundary layer, there are 2 

distinct areas: 

- an area further away from the wall (external 

area), which is controlled by the turbulence, 

- an area close to the wall (internal area), 

which is controlled by the viscosity. 

This differentiation of areas comes right from the 

analysis of experimental data, which refer to the total 

tension in the fluid. It has been found that the total 

tension eff is practically given by the turbulent 

component ' 'i ju u  on almost the entire 

thickness of the boundary layer (approx. 90%), with 

the exception of a small adjacency of the wall, where 

the molecular viscosity becomes predominant. 

 

 
 

Fig. 1. At wall law [12]        

 

In the internal area (Fig. 1), there are three zones 

that can be highlighted [10], [11], [12]: 

1) the viscous sublayer, in which the speed 

variation law is considered to be universal: u y   

where  

,
u

u
u

 

                         (1) 

u y
y 



 
                         (2) 

the friction speed u is defined by the following 

relation:  

Pu





,                       (3) 

and P represents the wall friction effort. 

The viscous sublayer, also sometimes incorrectly 

called laminar sublayer (due to the presence of speed 

fluctuations), covers the area from the wall to 

 4 5y  . 

2) the inertial (or logarithmic) sublayer, which is 

also distinguished by a universal speed distribution 

law (also called logarithmic law or at wall law) 

1
lnu y C



   , where 0.41 is the constant of 

Von Kármán and C is a universal constant with the 

value of about 5.25 [12]. Experiments show that the 

logarithmic law is valid for a wide variety of 

conditions, like high pressure gradient flows (in the 

case of adverse pressure gradient, up to the adjacency 

of the separation point) or turbulent flows with low 

Reynolds numbers. The experiments show that the at 

wall law is verified for 40y  [10]. 

3) the buffer sublayer, which develops between 

the viscous sublayer and the inertial sublayer, 

therefore corresponding to the interval 5 40y  . 

Boussinesq has proposed for the apparent 

(turbulent) tensions to be expressed according to the 

mean deformation speeds through an apparent 

(turbulent) viscosity: 

2 2
' '

3 3

ji k
i j ij t ij

j i k

uu u
u u k

x x x
   

  
     

    

        

(4) 

In the case of the boundary layer, the Boussinesq 

hypothesis becomes: 

' ' t

u
u v

y
 


 


                  (5) 

The Boussinesq hypothesis is based on the 

analogy between the impulse transport through the 

turbulent agitation and the molecular agitation, even 

though this analogy is not justified because the 

molecular agitation is independent from the 

movement and also exists in static fluids, while the 

turbulent fluctuations are intrinsically linked with the 

movement. The major disadvantage of the 

Boussinesq hypothesis consists in the assumption 

that turbulent viscosity is an isotropic scalar quantity, 

a fact which is not very true, especially for the flows 

with strong vertices, secondary flows etc. 

By direct analogy with the turbulent impulse 

transport, the turbulent thermic flux can be expressed 

according to the temperature gradient: 

' 'j t

j

T
u T

x
 


 


                (6) 

where t is the turbulent thermic diffusion 

coefficient. The Reynolds analogy between the 

impulse transport and the heat transport implies the 
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existence of a connection between the apparent 

thermic diffusivity t and the turbulent viscosity t 

through a relation such as: 

/

Pr Pr

t t

t

t t

  
                            (7) 

where Prt is the turbulent Prandtl number, which is 

usually considered constant. Recently conducted 

research has highlighted a variation of the turbulent 

Prandtl number over the boundary layer’s thickness, 

so more exact calculations are currently undergoing, 

discarding the hypothesis of the constant turbulent 

Prandtl number [10]. 

On the criteria of using the Boussinesq 

hypothesis, two categories of turbulence models can 

be highlighted: 

- models with apparent viscosity (which use 

the Boussinesq hypothesis) and 

- models with transport equations for the 

Reynolds tensions, which do not employ the concept 

of apparent viscosity. 

The turbulence model developed by Spalart and 

Allmaras [13] has only one transport equation for the 

modified cinematic turbulent viscosity. Spalart and 

Allmaras started from the k- model, which is the 

most popular turbulence model with 2 equations. The 

standard k- turbulence model (just as it was created 

by Jones and Launder [10]) has two main 

disadvantages: 

- it is much too dissipative (it over evaluates 

the turbulent viscosity t), 

- it is a turbulence model only for high 

Reynolds numbers, in other words, the viscous 

sublayer and the transition sublayer between the 

viscous one and the inertial (logarithmic) one, cannot 

be calculated and, therefore, imply the use of wall 

functions, which represent with considerable error 

the detachment and reattachment of the boundary 

layer to the wall, due to the simplificating hypothesis 

that they employ. 

Starting from the k- turbulence model, Spalart 

and Allmaras have created a new turbulence model, 

which is relatively simple, with only one transport 

equation that removes the two major disadvantages 

stated above. 

The standard k- turbulence model [14] is valid 

only for the completely developed turbulence area 

and, therefore, cannot be applied in the viscous 

sublayer or the transition sublayer between the 

viscous one and the inertial one. Consequently, the 

limit conditions for the transport equations of this 

turbulence model cannot be imposed at the wall. Let 

P be a point located at yP distance from the wall, 

where the speed parallel to the wall is uP (Fig. 2). The 

P point is presumed to be located far enough from 

the wall for it to belong to the inertial area of the 

boundary layer, where the logarithmic law is valid as 

long as there is no flow detachment: 

1
ln PP

u yu
C

u



  
                     (8) 

which allows for the determination of the u friction 

speed through a numerical method (for instance, the 

secant method or Newton–Raphson). Using the 

hypothesis of local equilibrium between the 

generation of turbulent kinetic energy Gk and the 

turbulent dissipation  at point P, 
Pk PG  , the 

following relations can be deduced: 
2

,P

u
k

C





                             (9) 

3

P

P

u

y




                             (10) 

which will be considered as limit conditions for the 

inertial (logarithmic) area of the boundary layer (Fig. 

2). 

 
Fig. 2. Imposing the limit conditions in the inertial area [12] 
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Some CFD codes (for example, Fluent) solve the 

transport equation for the turbulent kinetic energy k 

up to the wall, where the condition 0Pk   is 

imposed. 

Using the logarithmic law and the hypothesis of 

local equilibrium between the generation of turbulent 

kinetic energy Gk and the turbulent dissipation  at 

point P, the following relation can be deduced: 
3/ 4 3/ 2

P

P

P

C k

y





                        (11) 

The SST k- turbulence model was developed by 

Menter [20] with the purpose of combining the 

advantages of the k- and k- turbulence models. 

The transport equations of the SST k- turbulence 

model are similar to those of the k- turbulence 

model: 

    ki k k

i j j

k
k ku G Y

t x x x
 

    
     

     

  (12) 

   i

i

j j

u
t x

G Y D
x x

   

 



 
 

 

  
     

   

         (13) 

The diffusivities for the SST k- turbulence 

model are given by the following relations: 

t
k

k





                         (14) 

and  

t








                         (15)   

where k şi  are the turbulent Prandtl numbers 

associated with the turbulent kinetic energy k and its 

specific dissipation : 

1 1

,1 ,2

1

1k

k k

F F


 






                  (16) 

and  

1 1

,1 ,2

1

1F F

 



 






                (17) 

The fixed values for this turbulence model k,1, 

k,2, ,1 and ,2 are: ,1 1.176k  , ,2 1.0k  , 

,1 2.0  , ,2 1.168  , while the F1 and 1 

functions are given by the following relations: 

 4

1 1tanhF                         (18) 

1 2 2

,2

500 4
min max , ,

0.09 P P

k k

y y D y 

 

    

  
     

   

   (19) 

where yP is the distance to the closest wall and D

  is 

the positive section of the transverse diffusion 

expression: 

20

,2

1 1
max 2 , 10

j j

k
D

x x






 

 
  

  
   

        (20) 

The turbulent diffusion t can be obtained from 

the relation: 

2

*

1

1

1
max ,

t

k

F

a









 
 
 

      (21) 

where:  

2 ij ij    ,                     (22) 

1

2

ji

ij

j i

uu

x x

 
   

   

,              (23) 

 2

2 2tanhF   ,                 (24) 

2 2

500
max 2 ,

0.09 P P

k

y y



  

 
   

 

,             (25) 

1 0.31a                         (26) 

Inside of the transport equation k, kG  represents 

the generation of turbulent kinetic energy k and is 

defined by the following relation: 

 *min , 10k kG G k          (27) 

where Gk represents the generation of turbulent 

kinetic energy k, calculated in the same way as for 

the standard k- [31] turbulence model: 
2

k tG S                       (28) 

where the module of the S tensor is defined in the 

same way as for the standard k- turbulence model: 

2 ij ijS S S                         (29) 

where the deformation speed tensor Sij is defined by 

the relation: 

1

2

j i

ij

i j

u u
S

x x

  
  

   

               (30) 

The *
 coefficient is defined by the following 

relation: 

 * * *1i tF M                (31) 

where:  
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4

* *

4

Re4

15 R

Re
1

R

t

i

t





 

 
   
 


 

   
 

,                    (32) 

 
* 0.09  ,

                          (33) 

 

Ret

k


 ,                        (34) 

 

8R                               (35) 

 
* 1.5                      (36) 

and the compressibility function F(Mt) is given by 

the relation: 

  0

2 2

0 0

0 ,

,

t t

t

t t t t

M M
F M

M M M M


 

 
      (37) 

where  

2

2

2
t

k
M

c


, 

                                   (38) 

 

0 0.25tM 
,
                                   (39) 

 

c RT                                    (40) 

In the transport equation for , G represents the 

generation of specific turbulent dissipation  and is 

obtained from the relation: 

k k
tt

G G G

 





                     (41) 

It is important to underline the fact that the above 

definition is different from the one of the standard k-

 turbulence model, yet the  coefficient is defined 

in the same manner as for the standard k- 

turbulence model: 

0

*

Re / R

1 Re / R

t

t










 

  
 

               (42) 

where  

*

* * 0 Re /

1 Re /

t k

t k

R

R


 

 
  

 
,               (43) 

 

6kR 
,                               (44) 

 

2.95R 
,
                          (45) 

0

1

9
  ,                               (46) 

 
* 1 

,
                                (47)

 

*

0
3

i  ,                              (48) 

 

0.072i                              (49) 

For the standard k- turbulence model, a is 

defined as a constant (a = 0.52), yet for the SST k- 

turbulence model, a is defined as a function: 

 1 ,1 1 ,21F F                     (50) 

where 
2

,1

,1 * *

,1

i



 


  


 

  ,                (51) 

 
2

,2

,2 * *

,2

i



 


  


 

  ,              (52) 

 

,1 0.075i 
,
                    (53) 

 

,2 0.0828i                    (54) 

 

0.41                         (55) 

The Yk term represents the dissipation of turbulent 

kinetic energy k and is defined in the same manner as 

for the standard k- turbulence model, with the main 

difference being the way in which the f* term is 

evaluated. In the standard k- turbulence model, f* 

is defined as a constant, while in the SST k- 

turbulence model, f* is defined with the fixed value 

of 1. 
*

kY k                         (56) 

The Y represents the destruction of the specific 

turbulent dissipation  and is defined in the same 

manner as for the standard k- turbulence model. 

The main difference is the way in which the i and f 

terms are evaluated. In the standard k- turbulence 

model, i is a constant (0.072) and f is a function, 

while in the SST k- turbulence model, f is defined 

with the fixed value of 1. Therefore, 
2Y                         (57) 

where  

 
*

*1 i

i t

i

F M


  


 
  

 
.          (58) 
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In contrast with the standard k- turbulence 

model where i is a constant (0.072), in the SST k- 

turbulence model i is a function: 

 1 ,1 1 ,21i i iF F                   (59) 

The SST k- turbulence model is based on the 

standard k- and k- turbulence models. In order to 

combine the two turbulence models, the standard k- 

turbulence models were transformed into equations 

having k and  as unknown variables, which has led 

to the introduction of the transversal diffusion D 

term into the transport equation for , defined by 

the following relation: 

 1 ,2

1
2 1

j j

k
D F

x x
 






 
 

 
        (60) 

In regard to the limit conditions, at the entrance, 

the k and   values have to be imposed, while at 

the exit there is no need to impose any condition as 

long as the flow is not inverted. In order to use this 

turbulence model [15] efficiently, the dimensionless 

y
+
 scale, which represents the distance between the 

grid nodes and the closest solid wall, should take a 

value somewhere around that of the integer for 

calculation cells that have at least one solid frontier. 

In this case, Menter recommended the following 

limit conditions: 

0Pk                           (61) 

2

,1

6
10P

i Py





                   (62) 

where yP is the distance to the closest wall. It is 

important to underline the fact that Wilcox, after 

considering the wall rugosity, has recommended a 

different set of relations for P . 

 

3. THE MODEL 

 

It is considered that the Coanda profile type 

allows the use of axisymmetric flow. 

For a numerical simulation of the viscous 

sublayer, the dimensionless scale y
+
 has to be equal 

or lower than 1, which means that the height of the 

first cell layer from the solid wall has to be the 

magnitude of microns for transonic flows. 

In order to obtain a grid of a quality as high as 

possible, the calculations domain has been divided 

into 14 blocks or 27 blocks (Fig. 3), which has 

facilitated the achievement of a structured multi-

block grid with 12270 or 20655 quadrilateral cells. 

The extended and restricted domains have been 

comparatively analyzed for the purpose of studying 

the limit conditions influence on the results of the 

numerical simulations. 

The flow was presumed to be completely 

turbulent and the Menter [16] SST k- turbulence 

model was used for calculating the Reynolds 

(turbulent) tensions, having limit conditions in the 

wall proximity given by the (61) and (62) relations. 

The numerical simulations were achieved by 

employing the Ansys Fluent 14 code, which is based 

on the finite volumes method [10], [17], [18], [19], 

[20]. Upon entering the calculation domain, the total 

pressure of 1.3 bars and total temperature of 291 K 

were imposed, the flow was perpendicular on the 

entrance, the turbulence degree was 5% and the ratio 

between the turbulent viscosity and the molecular 

viscosity was 10. At the other domain limit, the only 

imposed parameters were the static pressure that was 

equal to the atmospheric pressure. 

A resulting acceleration of the air on the upside of 

the Coanda profile can be observed without any 

separation, which determined a decrease of static 

pressure on the upside of the profile, which creates 

lift. By integrating the static pressure distribution 

from the Coanda profile, a lift force of 6.47 N is 

obtained. Unfortunately, when the flow passes from 

the axial direction to the radial direction, 

considerable loss of total pressure can be observed, 

which decreases the Coanda profile resulting lift 

force. 

Upon entering the calculation domain, the 

following values were imposed: 

- absolute total pressure of 1.3 bar, 

- total temperature of 291 K, 

- flow direction perpendicular on the entrance, 

- turbulence degree of 5%, 

- ratio between turbulent and molecular viscosity 

of 10, 

- at the other domain limit, the only imposed 

parameters were the static pressure that was equal to 

the atmospheric pressure; the other parameters 

(numerical limit conditions) were extrapolated from 

inside the calculation domain, 

- the walls (solid frontiers) were presumed to be 

without slip (Vwall = 0), without roughness, and the 

pressure gradient was null (p/n = 0). 

For a numerical simulation of the viscous 

sublayer, the dimensionless scale y
+
 has to be equal 

or lower than 1, which means that the height of the 

first cell layer from the solid wall has to be the 

magnitude of microns for transonic flows. 
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a) Reduced calculation domain                        

 
b) Extended calculation domain 

Fig. 3. The multiblock structured calculation grid has a) 12 270 cells and b) 20 655 cells; the thickening 

of the grid in the adjacency of the walls can be observed, for the purpose of a more accurate simulation of the 

boundary layer 
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4. RESULTS AND DISCUTION 

 

The authors concluded that the behavior of the 

system is quite predictable at least for the tested 

range of the parameters involved (Fig. 4). 

The most important results are displayed in 

figures 5 and 6. A resulting acceleration of the air 

on the upside of the Coanda profile can be observed 

(Fig. 5) without any separation, which determined a 

decrease of the static pressure on the upside of the 

profile which creates lift. By integrating the static 

pressure distribution from the Coanda profile, a lift 

force of 6.47 N is obtained. Unfortunately, when 

the flow passes from the axial direction to the radial 

direction, considerable loss of total pressure can be 

observed, which decreases the Coanda profile 

resulting lift force. 
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Fig. 4. Flow lines in the adjacency of the Coanda profile upside and in the duct; the fact that the boundary layer 

remains attached to the upside of the profile and the creation of a powerful vortex in the duct can be observed 

(extended calculation domain, scale for air velocity in m/s) 
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a) Reduced calculation domain                             

 

 
b) Extended calculation domain 

 

Fig. 5. The friction effort on the radial direction for the Coanda profile upside, along the radius; the 

boundary layer remains attached to the profile 
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a) Reduced calculation domain                             

 

 
b) Extended calculation domain 

 

Fig. 6. The relative static pressure distribution for the Coanda profile upside, along the radius 

  

5. CONCLUSIONS 

 

The simulation on a Reynolds Averaged Navier-

Stokes (RANS) models based on the concept of 

turbulent viscosity could give valuable information 

on the behavior of such a system if the appropriate 

material limit conditions are imposed by the 

designers. The model proposed by the authors could 

simulate, with sufficient accuracy, the process of jet 

attaching on the Coanda profile. 

The jet is accelerated across the upside of the 

Coanda airfoil and, as a consequence of Bernoulli’s 

law, the static pressure drops, for thinner jets and 

higher velocities, the jet does not detach from the 

surface of the Coanda airfoil. 
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