
Mechanical Testing and Diagnosis
ISSN 2247 – 9635, 2016 (VI), Volume 1, pp. 13-19

13

FAST SOLUTION TO FIND QUASI-STATIC
PARAMETERS IN ELASTIC CONTACT USING LINEAR

DISPLACEMENT AND VARIABLE SFIFFNESS

Daniel REZMIRES

S.C. SIRCA S.A, Piatra Neamt, ROMANIA,

drezmir@hotmail.com

ABSTRACT
Hertz theory expresses the dependence between load and contact

approach, using a nonlinear function. Usually, an exponent p=1.5 for point
contact or p=1.11 for line contact is chosen. If we look at measure units, then
a correlation results between load and an exponential function of
displacement. pCQ  , where Q is the load, C the contact stiffness,  is
the displacement and p an exponent. That observation shows that the contact
stiffness has to have Newton/meter^p as measure unit.

This paper presents a linear dependence between load and displacement,
applied either to point contact type or line contact, equivalent with p
exponent equal to 1. Results calculated with the new relationship are
successfully compared to results calculated with other published
relationships and to some available experimental results, presented in
literature.

Keywords: Hertz contact, contact area, contact pressure, exponent p=1,
variable rigidity, minimum iterations.

INTRODUCTION

Assuming a profiled roller element, loaded with a small external load. In this case, the
initial contact will be a point contact type and the dependence between load and
diplacement is

Q= contact_stifness_point *depl^1.5 (1)
When the external load increases, then the contact tends to be a theoretical line contact

and, in this case,
Q= contact_stifnes_line *depl^1.11. (2)
To determine how the bearing load is distributed along rollers, it is first necessary to

develop load-deflection relationships for rolling elements with contacting raceways using
an exponent p=1. In this case, the load-displacement relation is

Q(Newton)= contact_stifness(N/m) *depl(m)*number(ellipticity). (3)
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MATHEMATICAL FORMULATION

Assuming p=1 and using a slicing technique, a fast approach of the problem is
developed to find both the shape and the size of contact domain, as well as the pressure
distribution on it. The contact load causes a displacement (  ) for the mass centre of a
particular rolling element. Figures 1 and 2 show the elements used in analysis.
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Fig. 1. Elements to describe the rolling elements geometry
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Fig. 2. Elements to describe the contact interference

If a rolling element has idx=1...N (usually idx=1...5), particular radius (see Fig. 1)
according to [1] is possible to express the local load in a slice, according to equation 4:

 0.11
idx, j idx idx idx idx, jQ E0 k fQ k dx    (4)

where E0 is the equivalent modulus of elasticity for the materials in contact, kidx is the
conformity in the idx region, dxidx is the slice width, δidx,j is the relative approach in contact,
corresponding to the idx region and for the j slice and

idx
idx

idx

0.94896 0.09445 ln(k )
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1 0.45412 ln(k )

 


  (5)
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The external load Q is given as sum of the individual loads in slices:

 0.11
idx idx idx idx idxidx j idx jQ Q E0 k fQ k dx          (6)

Analysing Eq (6) and Figure 2, it results:

idx idx idxidx j idxQ Q CT Area       (7)

where
 0.11

idx idx idxCT E0 k fQ k   (8)

 
2
idx, j

idx, j
idx

x
y x

2R
       (9)

where  is the relative approach in contact, y(x) is used to describe the roller geometry
according to Fig. 2 and Ridx is the local roller radius corresponding to the idx region.

From Figure 2, it results:
Areaidx=Area(ABCD) -Area(ABOCD) 10)

According to Eq. 10 and Eq. 9, Eq. 11 may be written:
2
idx, j

idx idx, j idx idx idx, j idx idxj j j j
idx

X
Area dx dx dx dx

2R
  

 
        
  

    (11)

Because idx idxj dx L and according to Eq. 7, if we note

2
idx, j

idx idxj

X
AA dx

2R

 
 
  

 , (12)

it results:
 idx idx idx idx idx idx idxidx idx idxQ CT AA L CT AA CT L               (13)

From Eq. 13, we can express the dependence between the external load and the roller
displacement according to Eq. 14:

idx idxidx

idx idxidx

Q CT AA

CT L


 






(14)

For a region idx, if we express the roller element geometry as j 0 idxx x f dx   and

idx idxdx =L /N , where N is the number of slices in the idx region, it results

 
2
idx, j

idx idxj idx

X
AA dx T L,x0, y0,R

2R

 
  
  

 (15)

where

 
2 2 3x0 L x0 L 0.88888 L

T L,x0, y0,R y0 L
2R

    
   (16)

The structure of Eq. 16 is due to the simple algebra summation of integer numbers,
following the algorithm:

2

2 nidx, j
idxj

j 1

L
x0 jX Ln

dx
2R 2R n

       
  

  (17)

because
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 n

j 0

n n 1
j

2


 (18)

and
  n

2

j 0

n n 1 2n 1
j

6

 
 (19)

Due to Eqs.16, 18 and 19, when n became large, a simply expression results, as Eq. 17.
Usually, a large value for n is chooses but, at limits, Eq.16 results. Using Eq.16 and the

roller element geometry, for an imposed value of y0idx coordinate, for a particular idx region,
we can appreciate the load as follow:

idx idx

idx idx idx idx idx idx
0 0

Q y0 CT L CT AA
 

     
 
  (20)

Eq. 20 shows that retrieved load does not depend on the number of slices and is a
function only of the number of the major regions.

When the number of regions is idx=5 and assuming in every section 100 slices, for
example, results that are necessary minimum 500 calculations multiply with number of the
iterations. As consequence of Eq. 20, the complexity of algorithm decreases and maximum
5 simply computing expressions are necessary.

If you search a solution which does not correspond to the limited idx regions, then you
have to evaluate if Qext>(Qidx-1) and Qext<(Qidx). To solve that problem in only maximum 10
steps, we can include the following algorithm.

Assuming x=0.1, then we have to evaluate the minimum value of the Eq. 21.

   idx 1
S S idx idxS 0

idx 1
S S idx idxS 0

Q CT T CT T x L
F idx

CT L CT x L







    
 

   




(21)

EXEMPLIFICATION FOR IDX=4 [2]

A rolling element geometry with R1=2500 mm, R2=54 mm, R3=764.2 mm, R4=0.7
mm, x1=5.2914 mm, x3=7.3 mm, dm=58 mm and dw=15 mm, similarly with [2], and an
external load Q=20 kN are considered.
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Applying eq. 21, it results the roller–raceway displacement. With that solution, the
quasi-static parameters for the roller-raceway contact are presented in Figures 4a and 4b.

Figure 4a shows that the load covers a part of the region idx=4, because a minimum
exists in this region. Appling the solution of eq 21, (displacement z=0.04355), it results the
pressure shape of the load and the contact form, according to Figure 4b. Figure 4b presents
the following information: pe is the contact pressure in a slice when the contact rigidity is a
mean of the partial contact rigidity in all idx regions; be represents the minor semi-axis
when the contact rigidity is a mean of the partial contact rigidity in all idx regions, p
represents the contact pressure in a slice, b represents the minor semi axis in a slice. In a
similar manner, for different external loads as in [2], results are presented in Figures 5a and
5b. These results shows a similarity with [2], when idx=4.
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EXEMPLIFICATIONS FOR IDX=2 [3]

A rolling element geometry with R1=1114 mm, R2=1.006 mm, x1=6.994 mm,
according to [3], and an external load of Q=33800 N is considered. Appling eq. 21, the
results are presented in Figure 6a and 6b.
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Figure 6a shows that the load covers a part of the region idx=2, because a minimum
exists in this region. Appling the solution of eq. 21 (displacement=0.065), it results the
shape of the load according to Figure 6.b. Similar with Figure 4b, Figure 6.b presents the
following information: pe is the contact pressure in a slice when the contact rigidity is a
mean of the partial contact rigidity in all idx regions; be represents the minor semi axis
when the contact rigidity is a mean of the partial contact rigidity in all idx regions ; p
represents the contact pressure in a slice; b represents the minor semi axis in a slice.
These results show a good similarity with [3], when idx=2.

EXEMPLIFICATION FOR IDX=3 [4]

The mathematical model is applied to different roller element geometries, according to [4].
The following geometries were considered: the flat profile, the end tapered profile, the
aerospace one and the full crowned profile. A direct application of eq. 21 shows the contact
parameters according to Figure 7. These results show a good similarity with [4], when idx=3.
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In Figure 7, the symbols have the meaning: pe is the contact pressure in a slice when the
contact rigidity is a mean of the partial contact rigidity in all idx regions; be represents the
minor semi-axis when the contact rigidity is a mean of the partial contact rigidity in all idx
regions; p represents the contact pressure in a slice; b represents the minor semi-axis in a
slice.

CONCLUSIONS

The mathematic model and Eq.21 minimize the computing time for contact parameters. A
single vector with maximum 10 elements replaces large matrices used to evaluate the contact
parameters and reduce number of iterations. The method gives approximate solutions with
different contact analysis type as half space model and FEM.

The linear dependence between load and displacement verifies the measure units and
represents the direct solution of the complex contact problem mathematics. As a conclusion,
Q=rigidity*displacement^1. The nonlinear effect of displacement exponent 1.5 or 1.11 is
replaced by having variable contact stiffness, similarly with multiple parallel springs. The
solution can evaluate the volume of stressed material. If different layers of material exist along
the rolling direction, then Eq. (21) can be also applied by modifying the equivalent modulus of
elasticity and increasing only the idx number of regions.
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