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ABSTRACT
There have been studied the regularities of rolling stock motion along 

the suspended mine monorail. Goal of the article is to find out the 
interdependence between the amplitude of suspended units side-sway and 
carriage displacement during the motion along the monorail. The given 
model represents the two-mass mechanical system, the free oscillations,
which are described with two generalized coordinates. There has been 
determined the connection between amplitude of suspended units side-sway 
and carriage displacement during motion along the monorail. Received 
dependences determine interconnection between amplitude of suspended 
units side-sway and carriage displacement during the motion along the 
monorail that allows for determining well-grounded parameters of existing 
and new-projecting monorails.
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1. INTRODUCTION

Suspended monorails are getting wider application at modern coal mines [1, 2]. Their 
main advantages are the possibility of subsidiary cargo transporting along the crooked mine 
workings with alternating sign. However in the real-life environment at the motion of 
suspended mine monorail, inevitably it appears the rolling stock side-sway, which 
influences onto motion safety. 

A number of works are devoted to researches of suspended monorails. In the works [3]
there have been given the results of research of monorail profile as the rolling stock 
oscillations source, there have been determined analytic dependences of disturbances and 
their parameters. There have been fixed the factors influencing onto monorail stock drifts 
values. Researches [4] are devoted to peculiarities of forming extra charge onto arched 
support of district workings with suspended monorails.

The present work is the continuation of the indicated researches. The goal of the 
article is to find out the interdependence between the amplitude of suspended units side-
sway and the carriage displacement, during the motion along the monorail.
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2. RESEARCH AND RESULTS

Let's examine the model of suspended rolling stock and carriage during the motion 
along monorail with constant speed (Fig. 1). The given model represents the two-mass 
mechanical system, the free oscillations of which are described with two generalized 
coordinates х – carriage transverse displacement relative to monorail on horizontal and 
- displacement angle of longitudinal axis of rolling stock body from vertical. Let's mark 
reduced mass of carriage tm , reduced mass of body km and distance from suspension 

points to centre of body mass l .

Fig.1. Design model of placement of suspended stock and carriage on the monorail:
a, c –  during motion; b – at rest.

Kinetic energy of system is kt TTT  , where tT – carriage kinetic energy, kT –

body kinetic energy.
As carriage during the motion can drift along axis X , so for it we have

2
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Body executes a linear motion along axis X and turns according to carriage onto 

angle  . That's why its speed is determined as kwtk vvv


 , where tv


– speed of 

carriage displacement, modulus of which is x ; kwv


– speed of body angular motion 

according to carriage, correspondingly modulus of which is 2 lvkw .

Using cosine theorem we have
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Taking into account (1) and (2) kinetic energy of all the system it will be
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Work of gravity on the virtual displacement x


 , leaving constant the generalized 

coordinate  , determines the work of gravity on this displacement

xgmxgmA ktx

  .

As the angle between g


and x

 is right, so 0Ax  . Therefore generalized force 

xQ , doing this work, equals to zero.

Thereafter work of gravities on the virtual displacement  , leaving constant the 

generalized coordinate x

 , will be 
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where 
  lrk .

Then,
   )sin(glmA k .

Generalized force, corresponding to this coordinate, equals to

 singlmQ k . (6)

Let's draw up the Lagrange equation as
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Received equations (7) let's equate to the system
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Let's have transformation and put a mark kkk mm  , where k - a parametric 

coefficient. As the result we'll get
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If Taylor series are used and functions are trigonometrically represented as sums of 
power series eliminating summands of the third and higher power, then received earlier 
system is possible to be represented as
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According to parameter k we can write
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3
k2

2
k1k0   , (11)
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Using method of numerous scales [7, 8] and taking into account time scales

...)T,T,T,T;(x)t,(x 3210kk   ,

...)T,T,T,T;()t,( 3210kk   ,

where tT0  , tT k1  , tT 2
k2  ; tT 3

k3  …, we have






















































































































































































































.0...
T

x

TT

x
2

T

x
g

2
1

TT
2

T
l

6
g

T
l

2
1

T

x

;0...
6T2

1
T

lm

T

x
m

TT

x
2

T

x
m

T

x
m

2
0

0
2

10
10

0
2

2
0

1
2

1

2
0

k

10

0
2

2
0

1
2

k

3
0

02
0

0
22

0
2

0

0
2

3
0

0

2
0

2
0

2
0

0
2

kk

2
0

0
2

k
10

0
2

2
0

1
2

tk2
0

0
2

t













(13)

Received equations describe the first form of oscillations of motion of examining 
mechanical system.

Taking into account the guidelines [5, 6] let's have the analysis of oscillations form 
stability. Let's study the turn of the main coordinate system onto angle α. With this, the new 
generalized coordinates will be x~ and ~ . For these coordinates the equations of system 

motion have the form
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For the first form of oscillations, the linearized equation in variations will be
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where x - variation of variable x~ ; v - variation of variable ~ .

Using Hill method and taking into account that tcosAx  , the linearized equation 
(14) can be represented as
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where 1k - angular coefficient of straight-line approximation of oscillation form, equals to 

tgk1  .

The equation solutions (15) determine the stability thresholds and correspond to 
periods Т and 2Т, where Т – period of coefficients in linearized equation. They can be 
found as
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Using this type of expansion in equations in variations for different harmonics, we 
get the systems of algebraic equations of expansion coefficient. Solutions of these systems 
determine stability thresholds of related forms of mechanical system oscillations.

In Fig. 2, the solution of equations system (10) has been represented for the 
following values of the parameters: tm = 5000 kg, km =1342 kg, l =0,4 m at starting 

conditions 0 =0.026; 0x =0; 0 =0 and 0x =0.

From the graph given in Fig. 2, one can see that body displacement onto angle 0.05 
rad leads to a maximum displacement of 25 mm, for km =1342 kg, and for km =342 kg –

14 mm. The calculations show that with increase of body suspension length l , from 0.4 till 
1.0 m, the carriage displacements are 75 mm and 40 mm, respectively. With this 
approximately into 1.5 times their increases the period of carriage and body oscillations.

Fig. 2. Graphs of functions 1 – )t(f ; 2 – )(tfx  : 

а – at kg1340mk  ; b – km =340 kg
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Fig. 3. Dependences )(fA  and )(xf : а - stability range threshold;

b – path of motion in area of instability

Fig. 3а has shown the stability range of related oscillations form, determined with 
the help of Hill method. For internals, there are typical unstable oscillations of mechanical 
system, which has loss of stability of the first form that leads to the appearing of a couple 
of new oscillations forms, nonlocal ones. The dependences of  оn x , for unstable 

motion, are given in Fig. 3b.

3. CONCLUSION

Received dependences determine interconnection between the amplitude of 
suspended units side-sway and the carriage displacement during the motion along the 
monorail allows for determining well-grounded parameters of existing and new-projecting 
monorails.

With the goal to accurate the received dependences in future, it is planned to carry 
out theoretical researches taking into account forced oscillations, caused by effect of 
disturbances from horizontal and vertical irregularities of the monorail.
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