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ABSTRACT 

Using a modified axial ball bearing with three balls and a new 

analytical methodology, this paper investigates, both theoretically and 

experimentally, the variation of the rolling friction torque in a ball-race 

contact in dry and lubricated conditions. It was determined that for the 

microballs having 1.588 mm in diameter, the rolling friction torque 

determined with the help of the proposed methodology in lubricated 

conditions is higher with one order of magnitude than the rolling friction 

torque determined with the help of Biboulet–Houpert equation. Increasing 

the diameter of the balls to 7.938 mm, the rolling friction torque determined 

by the proposed methodology corresponds to the values obtained by 

Biboulet–Houpert equation. Also, when the maximum Hertzian contact 

pressure between a ball and a race in pure rolling motion has low values 

(0.1–0.4 GPa), it was shown that in a ball-race contact operating from dry 

conditions to fully flooded lubricated conditions, both in micro scale and 

macro scale, the rolling friction torque has a continuum increases, dry 

conditions realizing the minimum friction torque. 

 

Keywords: Rolling friction torque, dry and lubricated contacts, axial ball 
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1. INTRODUCTION 

 

For a steel ball that rolls over a steel rolling track having certain conformity, as for the 

ball bearings, Houpert [5] introduces the following equation for the rolling friction torque, 

Mr: 
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in which 
xy

R/Rk  , 
y

R  and 
x

R  are the equivalent radii of curvature of the ball on 

rolling track in transverse and rolling directions, respectively, and d is the ball diameter. It 

can be noted that this rolling friction torque depends only on the material, the load and the 

contact geometry. 
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At the contact between a ball and the rolling track in a bearing, in the absence of an 

additional spin or gyroscopic motions, only two lines of pure rolling will exist on the 

contact ellipse [5]. In the rest of the contact area, the rolling will be accompanied by slips 

in the same or opposite direction of the motion, as a result of the geometrical effect. 

As a result of the raceway’s curvature an additional friction torque, Mc , is obtained, 

which has the following expression [6, 7]: 
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where s  is the friction coefficient on the contact ellipse, which depends on the lubrication 

regime, ca  is the major semi-axis of the contact ellipse, Rd  is the radius of the deformed 

contact surface, 
dR2
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 , in which 

c
R  is the transversal curvature radius of the 

rolling track. 

Thus, for a ball race contact the totally developed rolling friction torque developed 

can be obtained by summing Eqs. (1) and (2): 

McMrM
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According to Eq. (2), the presence of the lubricant in the rolling contact must lead to a 

decrease in the rolling friction torque by reducing the friction coefficient s  on the contact 

ellipse. 

In fact, the presence of The lubricant in the the rolling contact is responsible for an 

additional increase in rolling friction torque due to the hydrodynamic effect. In this context, 

Biboulet and Houpert [3] have established equations to compute the rolling friction torques 

in the point contacts, with fully flooded lubrication and pure rolling conditions, for the 

elastohydrodynamic (EHL) and IsoViscousRigid (IVR) regimes. In [1, 2], Biboulet 

Houpert equations are presented in details. 

If we consider the ball-race contact from a thrust ball bearing  operating at very low 

axial load, both in dry conditions and in fully flooded lubrication conditions, the high 

difference between the rolling friction torque in dry conditions and in fully flooded 

conditions can be observed.  

In our opinion, it is normal to consider that, at low normal contact pressures, from dry 

to fully flooded lubricant conditions, the rolling friction torque between a ball and a race 

will increase i.e in the mixed lubrication regimes, the rolling friction will have a continuous 

increase according to the increase of the lubricant parameter Λ.  

In this paper, Λ is defined as the ratio between the minimum film thickness and the 

equivalent roughness of the ball-race surfaces.  

Using a developed analytical model to determine the rolling friction torques between 

a ball and the races for a thrust ball bearing from the lubricant parameter Λ=0 (dry 

conditions) to Λ>3 (fully flooded lubricant conditions), as described in [1, 2], this paper 

investigates, both theoretically and experimentally, the variation of the rolling friction 

torque in a ball–race contact from dry to lubricated conditions. 
 
 

2. ANALYTICAL MODEL. SHORT PRESENTATION 

 

2.1. Modified Ball Bearing Set-Up 

 

Figure 1 depicts the modified thrust ball bearing used to study the rolling friction in 

ball races contacts [1, 2]. Between the rings of a thrust ball bearing three balls are mounted 
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at an angular position of 120
0
. The lower ring 1 is fastened to the table of a tribometer 

UMT 2 which can be rotated with the angular speed 1 . On the upper ring 2 a disk with 

known weight G  is attached, in order to obtain the axial loading upon the three balls. 

Because the balls are symmetrically placed, each ball will take over a load 3/GQ  .   

 

 
Fig. 1. Modified thrust ball bearing 

 

The rolling friction torques between the balls and the two raceways is measured using 

the spin-down method. This method consists in the rotation of the ring 1 with a constant 

angular speed until, as a result of frictions between balls and raceways, the ring 2 together 

with the attached upper disk will reached the synchronism angular speed (its speed will be 

equal with that of the ring 1). At this moment, the rotational table of the tribometer is 

suddenly stopped together with the ring 1, while the ring 2 together with the disk, starts a 

deceleration process until it reaches a complete stop, as all the kinetic energy of the disk 

and the ring 2 is consumed by the friction in the six rolling contacts and with the air. 

 

      2.2. Forces and Moments Acting on a Ball and Computing the Tangential Force 

 

The forces developed in the rolling process of a ball on the raceways in a modified 

thrust bearing and which act upon a ball, in the presence of the lubricant, are represented in 

Fig. 2. 

 
Fig. 2. Forces and moments acting on a ball 

 

The forces FR1 and FR2 are the hydrodynamic forces depending on the viscosity, the 

speed, the normal load, the materials and the contact geometry and they can be computed 

with the relation presented in [1, 4, 5]. 

Fib, the inertial force of the ball which acts in the ball center, is given by: 
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dt
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where bm  is the ball mass and b  is the angular speed of the balls in the rotational motion 

around the bearing axis. 

The rolling friction torques Mr1 and Mr2 developed between the ball and the two 

races are unknown in this analysis and will be determined later. FS1 and FS2 are the 

traction forces developed in the ball-races contacts [5]. 

From the equilibrium of the forces and the moments acting on a ball, the following 

analytical expressions for the traction forces FS1 and FS2 result: 
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At the ball-raceway 2 contact, the hydrodynamic force FR2, which acts on the ball, has 

the same direction as the hydrodynamic force acting on the raceway, while the traction 

force FS2 has an opposite direction on the ball and the raceway [5]. Accordingly, the ball 

will act on the raceway of ring 2 with a tangential force of contact Ft2, obtained by 

summing the two components FS2 and FR2: 

2
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2.3. Differential Equation of the Upper Disk 

 

During the deceleration process of the ring 2 together with the disk, the angular speed 

2  decreases from an initial value 0,2  to zero in a period of time t . From the dynamic 

balance of the moments that act on the ring 2 and on the disc, it can be written: 

0MrFt3
dt

d
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where J  is the moment of inertia of the ensemble formed by the ring 2 and the disk and 

fM  is the friction torque between the disk and the air.  

In [1, 2], details are presented regarding the development of Eq. (8) and the following 

differential equation results: 

2
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where a  and 1b  are constants defined by the relations: 
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In [8], a similar differential equation was developed, but neglecting the hydrodynamic 

forces FR and with the imposed hypothesis that the sum of friction torques ( 2Mr1Mr  ) 

does not depend on the angular speed, since the experiments were carried out in dry 

conditions.   

In the presence of the lubricant, both the hydrodynamic forces and the friction torques 

with the lubricant, depend on the speed with exponent values between 0.66 and 0.75. 
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In order to integrate the differential Eq. (9) having only the angular speed as a 

variable, in identical geometrical and loading conditions, the following approximation is 

introduced: 

22r1r K)]2FR1FR(d)MM[(   (11) 

in which the constant K  is speed independent. 

The friction loss due to the pivoting effect of the balls on the raceways, which appears 

in a thrust ball bearing, is neglected. Using the hypothesis expressed by the Eq. (8), the 

differential Eq. (9) becomes: 
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If it is noted the product *aKa   Eq. (12) is analytically solved, the expression for 

the angular speed  t2  as function of time t results: 
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where 1K  is a constant determined from the initial condition: at 0t  , the angular speed of 

the disc is   0,22 t  . The value of the 1K  constant is given by: 
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Considering that  
 

dt

td
t 2

2


 , Eq. (13) is integrated regarding the time and it 

results the analytical expression of the variation in time for the angular position of the disc 

 t2  during the deceleration period: 
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with the initial condition: at 0t  ,   0t2  . 

The K  parameter is established on the experimental basis imposing the following 

conditions: the disk has to stop at a time 0t  determined by testing and the measured 

cumulative position angle total,2  to correspond to the value given by the equation: 

total,202 )t(   (16) 

In the operating conditions with bearing rings having the same conformity and 

roughness on raceways, if the weight of the balls is negligible, it can be considered that the 

torques 1Mr  and 2Mr  are identical and also the forces FR1 and FR2 are equal, the 

tangential speeds at the ball contacts on the two raceways being identical. 

With these conditions, having determined the constant parameter K, it is possible to 

determine the rolling friction torque between the ball and a raceway  2RM  , as a 

function of the disk 2 angular speed, by the following equation: 

)(FRd
2

K
)(M 2

2
2R 


  (17) 

in which )(FR 2  is computed as a function of the angular speed of the disk 2, finally 

resulting the rolling friction torque in a contact, )(M 2R  , as a function of the angular 

speed. 
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3. TESTING METHODOLOGY 

 

The experiments were carried out on Tribometer CETR UMT 2 in the Tribology 

Laboratory from Mechanical Engineering Faculty of Iasi. The ring 1 was fixed to the 

rotational table of the tribometer so that it rotates together with the table. On the ring 1 

raceway, the 3 balls at equidistant position of 120
0
 each other were placed and the ring 2 

was mounted over them. 

For micro scale, the rings 1 and 2 were taken from an axial ball bearing 51100 and 

three microballs have 1.588 mm in diameter. Also, for the same rings were used three balls 

having 4.75 mm diameter. The normal load on each microballs was 8.68 mN and 33 mN, 

respectively. 

For macro scale, the rings 1 and 2 of the thrust ball bearing 51205 were used and 3 

balls having 7.938 mm in diameter, the normal load on each ball being 1.45 N.  

White marks were traced on the ring 1 and ring 2 in order to visualize the angular 

position for the two elements in rotating motion. 

The normal load is generated by the weight of the ring 2 (at the diameter of 1.588 mm) 

and by additional disks for the balls of 4.75 mm and 7.938 mm in diameter, respectively. 

Above the disk, a video high speed camera Philips was mounted. The images captured by 

the camera were recorded on the computer in real time and subsequently processed with the 

program VIRTUAL DUB. 

The testing equipments for macro scale and micro scale are presented in Figures 3 and 

4, respectively.  

 

 
Fig. 3. The experimental equipments for macro scale  

 

For testing conditions, two types of mineral oil were used: transmission oil with the 

viscosity of 0.35 Pa·s at 27
0
C and mechanisms oil with 0.05 Pa·s viscosity at 27

0
C. The oil 

quantities were a few drops in order to avoid the drag losses. The roughness parameter was 

measured with Taylor Hobson Profilometer, the values of the parameter Ra  were: 

m04.0Ra r   for the two rolling races and m03.0Rab   for the balls. 
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Fig. 4. The experimental equipments for micro scale 

 

The experiments were carried out at speeds between 60 rpm and 250 rpm. For this 

speed range, at the existing roughness and with the used oils, it was possible to cover the 

entire range of the lubrication regimes. 

 

4. EXPERIMENTAL RESULTS 

 

A lot of tests concerning the time evaluation of the angular position 2  in dry and 

lubricated conditions were performed with the two devices. Based on the experimental 

results, with Eq. (17) the rolling friction torques Mr  were determined as a function of the 

rotational speed of the ring 2. 

Figure 5 presents the comparison among the rolling friction torques determined by 

our methodology, in dry and lubricated conditions and the rolling friction torque 

determined by Biboulet–Houpert equation in lubricated conditions, the microballs having 

1.588 mm diameter, under a normal load of 8.68 mN, the oil viscosity being 0.05 Pas.  

 

 
Fig. 5. The rolling friction torque vs. the rotational speed for the microballs having 1.588 

mm in diameter  

 

Figure 6 shows a comparison between the rolling friction torques determined by our 

methodology in lubricated conditions and the rolling friction torque determined with 
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Biboulet–Houpert equation in lubricated conditions (the microballs having 4.75 mm in 

diameter, under a normal load of 33 mN, the oil viscosity being 0.05 Pas). 

Figure 7 presents the comparison between rolling friction torques determined by our 

methodology in lubricated conditions and rolling friction torque determined with Biboulet–

Houpert equation in lubricated conditions, the balls having 7.938 mm indiameter, under a 

normal load of 1.45 N, the lubricant viscosity being 0.35 Pas. 

 

 
 

Fig. 6. The rolling friction torque vs. the rotational speed for the microballs having 4.75 

mm in diameter  

 

 
 

Fig. 7. The rolling friction torque vs. the rotational speed for the balls of 7.938 mm in 

diameter 

 

Considering all the results obtained for dry, mixed and fully flooded lubrication 

conditions at macro scale, a cumulative diagram was realized in terms of the lubricant 

parameter  .  

Figure 8 presents the variation of the rolling friction torque between a ball and a 

raceway for   values in the range of 0 to 17, with a contact pressure of GPa264.00   

for the balls having 7.938 mm in diameter. On the same diagram, the values of the rolling 

friction torques when  >3, using the relations given by Biboulet-Houpert [3] are also 

indicated. 
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Fig. 8. The variation of the rolling friction torque between a 7.938 mm diameter ball and its 

raceway 

 vs. the lubricant parameter Λ  

 

A continuous increase of the rolling friction torque with increasing of the   

parameter can be observed from the values having the order of magnitude of 10
-3 

N·mm in 

dry conditions, to 10
-1

 N·mm in the presence of a fully lubricating film. 

 

5. CONCLUSIONS 

 

Using a modified axial ball bearing with three balls and a new analytical methodology, 

our paper investigates, both theoretically and experimentally, the variation of the rolling 

friction torque in a ball–race contact in dry and lubricated conditions.  

The rolling friction torque for three steel balls with a diameter of 1.588 mm, 4.75 mm 

and 7.938 mm, respectively, operating with the rotational speed between 60 rpm and 250 

rpm, axially loaded with normal forces between 8.68 mN and 1.45 N and having as 

lubricant a mineral oil with the dynamic viscosity of 0.35 Pas at 27
0
C - the operating 

temperature, was investigated. 

One can notice that, for the balls having 1.588 mm in diameter, the rolling friction 

torque determined by the proposed methodology is higher with one order of magnitude as 

compared to the rolling friction torque determined by Biboulet–Houpert equation. 

Increasing the diameter of the balls to 7.938 mm, the rolling friction torque determined 

by proposed methodology, corresponds to the values obtained by Biboulet–Houpert 

equation. 

Also, when the maximum Hertzian contact pressure between a ball and the race in pure 

rolling motion has low values (0.1–0.4 GPa), it was evidenced that in a ball-race contact 

operating from dry conditions to fully flooded lubricated conditions, both in micro scale 

and macro scale, the rolling friction torque has a continuum increase, the dry conditions 

realizing the minimum friction torque.  

Finally, a cumulative diagram including the variation of the rolling friction torque in a 

ball-race contact as a function of the lubrication parameter Λ between Λ=0 to Λ=17, was 

realized. 
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A continuous increase of the rolling friction torque, from dry conditions to fully 

flooded lubrication conditions, was obtained.  
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