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ABSTRACT 

The work presented in this paper analyzes the influence of the 

material damping properties of the composite plates with delaminations. 

The linear elastic behaviour of the laminate plates can be predicted from 

the properties of the individual plies using the laminate theory that can also 

be used to predict the damping properties of such plates. An orthotropic 

delamination model, describingthe delaminating mode, using COSMOS/M 

soft package, is presented in this paper for analyzing the behaviour of the 

delaminated composite plates during vibrations. So, the damaged part of 

the structures and the undamaged part have been represented by well-

known finite elements (layered shell elements). The influence of the position 

and the ellipse’s diameters ratio of the delaminated zone on the dynamic 

behaviour of the composite plate is investigated. The plates are made of    

E-glass polyester, having the dimensions: 320 mm x 320 mm and a 

thickness of 9.82 mm. The experiments for determining the damping 

coefficients and the first three natural frequencies for all plates were made 

with an experimental rig, also presented in the paper. 
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1. INTRODUCTION 

 

The vibration problems involving the orthotropic plates are common, ranging from 

the vibration control in the composite panels of the structures, in general, and in the ship 

hull structures, especially. In all these problems, one cannot get very far without values for 

the essential physical parameters of the material in question, in particular the elastic and 

damping constants for the relevant frequency range ([1]-[4]). Such values are not readily 

available in tabulated form, and indeed, for many of the materials which we shall be 

considering, there is a wide range of variation among samples of the same nominal 

material, arising from the variations in growth (for natural materials) and in fabrication. 

Therefore, it is often necessary to measure the elastic and damping constants for 

the particular plate under study, if the vibration predictions of any accuracy are needed. In 
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this paper, we describe an approach for making such measurements, based on observing the 

frequencies and damping factors of the low vibration modes of the plates with clamped 

boundaries (the most common case in the ship hull structures).  

The quantitative determinations of the damping constants require a little more 

complex apparatus and a much more care ([5]-[7]). Here, the main problem does not lie in 

measuring the modal damping rates, but in ensuring that the observed damping rate does 

indeed arise only from the internal damping in the plate and not from the additional losses 

into the plate’s supports or the observer’s instrumentation. 

Understanding the damping properties of the composite materials is the most 

important issue of the design and dynamic analysis of the ship structure in general. The 

offshore and ship structures are loaded by several dynamic forces. The reduction of the 

structural vibration is one of the key design aspects and the composite materials are used to 

reduce vibrations. The loss factor and Young's modulus must especially be known in order 

to develop the finite element codes for a composite structure ([8], [9], [10]). 

The damping of an engineering structure is important in many aspects of noise and 

vibration control, fatigue endurance and so on, since it controls the amplitude of the 

resonant vibration response ([3]). As a result of the energy dissipation mechanisms in a 

structure, the inherent material damping significantly contributes to the overall damping, 

and it is often the primary means of controlling the structure’s dynamic behaviour. Thus it 

is important to be able to control and predict the level of the inherent damping in such 

materials ([11],[10]). 

The linear elastic behaviour of the laminate plates can be predicted from the 

properties of the individual plies, using the laminate theory, that can also be helpful for 

evaluating the damping properties of such plates, through the concept of “complex 

modulus” ([12]-[18]).  

An orthotropic delamination model, describing the delaminating mode using 

COSMOS/M soft package, is developed in this paper for analyzing the behaviour of the 

delaminated composite plates during vibrations. So, the damaged part of the structures and 

the undamaged part have been represented by well-known finite elements (layered shell 

elements). The influence of the position and the ellipse’s diameters ratio of the delaminated 

zone on the dynamic behaviour of the composite plate is investigated ([19]). 

 

 

2. THE THEORY OF ORTHOTROPIC PLATES VIBRATIONS 

 

In the case of a thin, especially orthotropic plate, the small amplitude vibrational 

behaviour is governed by four elastic constants, for the simplest case in which shear and 

rotator inertia are ignored. We choose to use the constants D1, D2,  D3, and D4,  introduced 

in [1]. 

These are defined through the elastic strain energy of the plate as it vibrates in the 

x-y plane with a centre-plane transverse displacement in the z-direction 
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where h is the plate thickness and the integral is taken over the area of the plate. The 

constants Di can be written in terms of the Young’s moduli along the two main directions (x 

and y axes) of the plate, the two Poisson’s ratios between these directions xy and yx, and 

the in-plane shear modulus Gxy. 

D1=Ex/12,  D2=xyEy/6=yxEx/6D3=Ey/12D4=Gxy/3                  (2) 

where =1-xyyx.  
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Note that, in broad terms, D1 is associated with bending in the x direction, D3 with 

bending in the y direction, D4 with twisting motion, and D2 with Poisson’s ratio coupling 

between the x and y directions. 

The problem of interest is to measure the four elastic constants D1, D2,  D3, and 

D4, and the four associated damping constants. 

Once we know to reasonable accuracy, a particular mode shape and its frequency 

f, it is quite easy to calculate the damping of that mode. It is convenient, and probably at 

least as accurate as any practical measurement technique, to use a “small damping” 

approximation, which assumes that the modal Q factor is much greater than unity. Before 

estimating the Q factor, we have to introduce the four small quantities 1 to 4, defined by 

4,3,2,1i),DRe(/)DIm( iii                                             (3) 

In the upper equation, i are the conventional loss factors associated with the 

individual complex Di. The reciprocal of the modal Q factor of any given mode can be 

shown from Rayleigh’s principle to be simply a weighted sum of the four i [3]. The 

expression is 

i

4
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where Ji are the real quantities evaluated from the elastic mode shape, 



 



















A

22

A

3

2

2

2

1

1
dAhwf

dAh
x

w
D

J


;  



 









A

22

A

3

2

2

2

2

2

2
dAhwf

dAh
y

w

x

w
D

J


;  



 



















A

22

A

3

2

2

2

3

3
dAhwf

dAh
y

w
D

J


;  



 



















A

22

A

3

2
2

4

4
dAhwf

dAh
yx

w
D

J


.                                  (5) 

so that  

1J

4

1i
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

                                                             (6) 

The expressions (5) for the Ji simply indicate the partitioning of the potential 

energy, and thus, the dissipation rate, among the types of the motion associated with each 

of the Di in equation (1). 

The parameters Ji have another significance purely in terms of mode frequencies, 

which is also worth noting for a future reference: it follows, again from Rayleigh’s 

principle, that each Ji gives the changing rate of the mode frequency with the corresponding 

Di according to 
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 This result proves useful when fitting the trial values of the Di to the experimental 

data on the frequency fi. 

Before going on with the experimental method, it is useful to note the relationship 

between the elastic constants D1, D2, D3, and D4 and the more familiar elastic constants. 

One thing we can deduce about them, which applies to any thin flat orthotropic plate,  

follows from considering a long narrow strip cut from the plate. Such a strip will vibrate as 

a bending beam. If it is cut along a principal axis of the plate, it is readily shown that the 

effective Young’s moduli for the beam behaviour are, respectively: 

 )D4/DD(12E 3
2
21x  ; )D4/DD(12E 1

2
23y                           (8) 
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for a strip cut along the x or y axis. The strip width is taken to be very small as compared to 

the bending wavelength, but still large as compared to the plate thickness h. For such a strip 

cut from the plate at an angle  to one principal axis (the x-axis), the equivalent Young’s 

modulus can be shown to be 

         )(/)4(3 2

2314



 DDDDE                                          (9) 

where 
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The simplest case occurs when the plate is cut from the solid parallel to one of the 

principal planes. In that case, the values for the four Di can be obtained from equations (2).  

There is a simple reciprocal property relating the two Young’s moduli and the two 

corresponding Poisson’s ratios, so that only three of these are independent, a fact used in 

exhibiting the symmetrical property of Di in eq. 2 as: 

 
xxyyyx

EE //                                                (11) 

 

 

 3. PLATES VIBRATIONS ANALYSIS  

 

Due to the anisotropy of the composite laminates and the non-uniform distribution 

of the stresses in the lamina under flexural bending, as well as other types of static/dynamic 

loading, the failure process of laminates is very complex. The large differences in strength 

and stiffness values of the fiber and the matrix lead to various forms of defect/damage 

caused during the manufacturing process, as well as under service conditions.  

In shipbuilding, many structures made of composite laminates are situated such 

that they are susceptible to foreign object impacts, which can result in barely visible impact 

damage. Often, in the form of a complicated array of matrix cracks and interlaminar 

delaminations, these barely visible impact damages can be quite extensive and can 

significantly reduce a structure’s load bearing capability and behaviour on vibrations.  

The delamination or the separation of two adjacent plies in a composite laminate is 

one of the most common modes of damage. The presence of the delamination may reduce 

the overall stiffness, as well as the residual strength leading to structural failure. A clear 

understanding of the influence of delamination on the performance of the laminates is very 

essential to efficiently use them in structural design applications.  

Since such process is generally difficult to detect, the structures must be able to 

function safely with the present delamination. 

Although several studies are available in the literature in the field of delamination 

prediction and growth, the effect of delamination on the vibration behaviour and the 

delamination propagation under fatigue loading, the work on the effect of delamination on 

the first ply failure of the laminate is scarce. 

The aim of this study is to present the studies on the influence of the elliptical 

single and doubled delaminations on the changes in the vibration behaviour of the ship 

deck plates made of composite materials. An orthotropic delamination model, describing 

the mixed mode delaminating, using FEM analysis, was applied. Thus, the damaged part of 

the structures and the undamaged part have been represented by well-known finite elements 

(layered shell elements). The influence of the position and the ellipse’s diameters ratio of 

the delaminated zone on the natural frequencies was investigated. 

If the initial delaminations do exist, these delaminations may close under the 

applied load. To prevent the two adjacent plies from penetrating, a simple numerical 

contact model is used. 

Taking into account the thickness symmetry of the plates, only the cases of the 

position of the delamination on one side of the symmetry axis are presented. The variations 
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of the transversal displacement of the point placed in the middle of the plate versus the in-

plane applied pressure are plotted for each position of the delamination. The buckling load 

determination for the general buckling of the plate has been done by a graphical method. 

The post-buckling calculus has been performed in order to explain the complete behaviour 

of the plate. Only the cases with one delamination placed between two adjacent laminas are 

presented here. 

There are several ways in which the panel can be modeled for the delamination 

analysis. For the present study, a 3-D model with 3-node shell composite elements is used. 

The panel is divided into two sub-laminates by a hypothetical plane containing the 

delamination. For this reason, the present finite element model would be referred to as the 

two sub-laminate model. The two sub-laminates are separately modeled with shell 

composite elements and then joined face to face with the appropriate interfacial constraint 

conditions for the corresponding nodes on the sub-laminates, depending on whether the 

nodes lie in the delaminated or the region undelaminated one. 

The numerical analysis and the experimental tests were developed on perfect plate 

and imperfect plates (single and double delaminations). 

The material used for plates is E-glass/epoxy, having the mechanical 

characteristics: 

Ex=3.86 GPa, Ey =8.27 GPa, Ez =8.27 GPa, Gxy=4.1412 GPa, Gxz =4.1412 GPa, 

Gyz =4.1412 GPa, xy=yz=xz=0.26. 

       

Table 1. Plate lay-up 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By imposing the diameters ratio of the delamination and from the condition of the 

same delamination area (400 mm
2
), the values of the diameters have resulted. The 

delaminated plates are presented in Figures 5-9. 

 

 

4. EXPERIMENTAL ANALYSIS  

 

The experiments for determining the damping coefficients and the first three 

natural frequencies for the bending vibrations, for all 5 plates with various geometries, were 

made with the help of an experimental rig, presented in Figure 1. The boundary conditions 

(clamped on all sides) for the plates were done with a very rigid frame.  

The plate was made of E-glass epoxy. The delamination was placed between 

layers 5 and 6. 

The excitation was done with the impact method. For each test, the data are 

obtained for a time interval of 3 seconds after the plate excitation. This allows for time 

Layer  h [mm] 

1 45
0
 0.195 

2 -45
0
 0.195 

3 0
0
 2.36 

4 45
0
 0.195 

5 -45
0
 0.195 

6 0
0
 3.54 

7 -45
0
 0.195 

8 45
0
 0.195 

9 0
0
 2.36 

10 -45
0
 0.195 

11 45
0
 0.195 
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measuring the damping effects. Then the experimental data are processed to show the 

effectiveness of the tested control algorithm. A fast Fourier transformation (FFT) is 

performed by the instrument (vibrometer) in order to provide an acceleration spectral 

density plot of the plate response, which gives a measure of the signal energy level at 

different frequencies.  

The Q of a system is a measure of damping, usually defined from the energy 

considerations. The Q is π times the ratio of peak energy stored to the energy dissipated per 

cycle and it is equal to π/δ. 

There are many methods for measuring the damping of a vibrating system. The 

logarithmic decrement method and the bandwidth method are the most used in 

experiments.  

The logarithmic decrement method is used to measure the damping in the time 

domain. In this method, the free vibration displacement amplitude history of a system to an 

impulse is measured and recorded. A typical free decay curve is shown in Figure 2. The 

logarithmic decrement is the natural logarithmic value of the ratio of two adjacent peak 

values of the displacement in the free decay vibration.  

The determination of the damping coefficients was made by the vibration 

equipment, presented in Figure 1. According to the logarithmic decrement, the damping 

coefficient was determined for all plate specimens. 

The damping coefficients determined by the experiments were used in FEM 

analysis done with the package licenced soft COSMOS/M.  

The logarithmic decrement, δ, is used to find the damping ratio of an 

underdamped system in the time domain. The logarithmic decrement is the natural log of 

the ratio of the amplitudes of any two successive peaks 

1n

1

w

w
ln

n

1



                                                       (12) 

where w1 is the greater of the two amplitudes and wn+1 is the amplitude of a peak n periods 

away. Then the damping ratio is found from the logarithmic decrement: 

2)/2(1

1





                                              (13) 

According to the measurements results, the first three frequencies for the single 

delaminated plates are presented in Table 2. The identification of the frequencies 

corresponding to the bending vibrations was done by comparing them to the results 

obtained from initial FEM calculus. 

 

 

 

 

Fig. 1 The experimental rig Fig. 2. The motion decay for damped vibrations 

 

Table 2. The first three measured frequencies 

http://www.answers.com/topic/dissipated
http://en.wikipedia.org/wiki/Damping_ratio
http://en.wikipedia.org/wiki/Natural_logarithm
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Plate case 
f1 

[Hz] 

f2 

[Hz] 

f3 

[Hz] 

Dx/Dy=0.5 10.68 21.68 41.78 

Dx/Dy=0.75 10.86 21.58 41.83 

Dx/Dy=1 10.77 21.68 41.95 

Dx/Dy=1.25 10.64 21.62 42.14 

Dx/Dy=2 10.74 21.83 42.67 

Perfect 10.25 21.86 39.98 

 

 

5. NUMERICAL ANALYSIS  

 

For the case of a plate with a single delamination placed between layers 5 and 6, 

the numerical analysis of the damped and nondamped free vibration was done. 

The geometry of the delamination placed in the middle of the thickness is 

considered in the following cases (Figures 5-9): 

- Case 1 (Dx/Dy=0.5): transversal diameter Dy=28.28 mm, longitudinal diameter 

Dx=14.14 mm; 

- Case 2 (Dx/Dy=0.75): transversal diameter Dy=23.09 mm; longitudinal diameter 

Dx=17.32 mm; 

- Case 3 (Dx/Dy=1): transversal diameter Dy=20 mm; longitudinal diameter Dx=20 

mm. 

- Case 4 (Dx/Dy=1.25): transversal diameter Dy= 17.32 mm, longitudinal diameter 

Dx=23.09 mm; 

- Case 5 (Dx/Dy=2): transversal diameter Dy=14.14 mm; longitudinal diameter 

Dx=28.28 mm. 

The plate is considered as clamped on the sides. 

The variation of the first three natural frequencies of the bending free vibrations 

versus the diameters ratio of the delamination area is presented in Figure 3. 

The variation of the first three natural frequencies of the bending free damped 

vibrations versus the diameters ratio of the delamination area, for the case of delamination 

placed between the layers 5 and 6 is presented in Figure 4. 
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Fig. 3 The variation of the first three natural 

frequencies (bending vibrations) versus the 

diameters’ ratio of the delamination area 

Fig. 4 The variation of the first three natural 

frequencies (damped bending vibrations) 

versus the diameters’ ratio of the 

delamination area 
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Fig. 5 Plate with single delamination  

Case 1 
Fig. 6 Plate with single delamination  

Case 2 

 

  
Fig. 7 Plate with single delamination  

Case 3 
Fig. 8 Plate with single delamination  

Case 4 

 

 
Fig. 9 Plate with single delamination 

Case 5 

 

 

6. CONCLUSIONS 

 

The free vibration of a structure is a vibration in which energy is neither added to 

nor removed from the vibrating system. It will just keep vibrating forever at the same 
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amplitude. Except from some applications there are no free vibrations in nature. They are 

all damped to some extent.  

Damped vibration is one in which there is an energy loss from the vibrating 

system. The amplitude of a damped vibration will eventually decay to zero. 

Basically the natural frequency of a vibrating system increases with the stiffness 

of the elements and decreases with their mass.  

The inertial forces in these systems are large compared to the drag or the friction 

forces. 

It has been verified that thin-plate bending theory can be used with confidence to 

predict the low-frequency vibration behaviour of the clamped edged, CFRP laminates and 

that laminate theory is capable of predicting the elastic behaviour with sufficient accuracy 

to enable the frequency and mode shape predictions. It has also been shown that the 

laminate theory can be extended to predict the damping properties. The results have been 

presented in terms of an unfamiliar combination of the elastic constants, introduced in 

earlier studies and defined in equations (1) and (2). These constants are a convenient set to 

use when discussing the thin-plate deformation or its vibration. They are also the constants 

which naturally occur in the expression of the strain energy in terms of the plate centre-

plane displacement, so that they lend themselves to use in the Finite-Element computations. 

 

Table 3. The first three frequencies (with and without damping) 

 obtained in numerical analysis 

 

 

 

 

 

 

 

 

 

 

The elastic and damping properties of the plies of the laminate were deduced from 

the measurements on the complete laminate, using inversely the laminate theory. This 

approach might have advantages in some circumstances: it allows for the necessary 

parameter values to be deduced from a standard “production” laminate, and it obviates the 

need to make special unidirectional laminates for calibration purposes. 

The elastic constants and, particularly, the damping constants are likely to be 

sensitive to the variations of manufacturing processes. The delaminations, the incomplete 

bonding among plies are likely to reduce the stiffness and greatly increase the damping.  

As it is seen in Table 3, the frequencies in the case of the damping vibrations are 

greater than the frequencies of the free vibrations (vibrations without damping) for all cases 

of delaminated plates and for the perfect plate. 

The fundamental frequency of the vibration increases as the diameters’ ratio is 

increasing. 
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No. 
f1 [Hz] f2 [Hz] f3 [Hz] 

free dump free dump free dump 

1 10.24 11.21 20.65 22.66 39.48 43.32 

2 10.21 11.16 20.66 22.65 39.85 43.70 

3 10.21 11.21 20.69 22.74 40.14 44.07 

4 10.23 11.19 20.75 22.76 40.45 44.35 

5 10.31 11.29 20.90 22.94 40.83 44.79 

perf. 9.74 10.70 20.71 22.77 37.95 41.68 
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