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Abstract 
 Biomechanical modeling with the help of analytical mechanics together with the application of 

dedicated IT resources and mechanical simulations lead to a higher accuracy of the biomechanical 

model. From an analytical point of view, this article develops the equation of motion of the human 

head in a biomechanical system with three degrees of freedom using the Lagrange equations of the 

second case. It has been considered that this biomechanical subsystem consists of 3 anatomical 

elements: the head, the cervical region and the rest of the spine (considered as being a single element 

consisting of the thoracic region, lumbar region, sacral region and coccygeal region).  

 The forces which stress the head and spine during normal movements or when activities in the 

workplace are performed make biomechanical modeling different. Therefore, the movement of the 

subsystem was analyzed in the sagittal plane taking into consideration joints of cylindroid type, and 

the subsystem as a triple inverted pendulum.  

 The main purpose of this model was to obtain the differential equations of motion of the 

mechanical subsystem considered to be in the matrix-analytical form. 

 

Keywords: biomechanical system, biomechanical model, Lagrange equations. 

 

 

1. INTRODUCTION 

 

Biomechanical analysis of the human body for 

identifying the equations of motion of anatomical 

elements or joints is and will remain a challenge for 

any researcher. The forces which stress the head and 

the spine during normal movements or when activities 

in the workplace are performed make biomechanical 

modeling different. The different interpretation of the 

origin and insertions of muscles (as the main generator 

of movement) for some biomechanical models 

belonging to the human body increase the complexity 

of explaining the phenomena. Modeling with the help 

of analytical mechanics together with the application 

of computer tools dedicated to mechanical simulations 

lead to a higher accuracy of the biomechanical model. 

The development of a mathematical model of the 

skeletal-muscular system is based on a simplified 

representation of reality. The usefulness of the model 

lies in the ease of being used and implemented in 

computer applications in order to determine some 

biomechanical characteristics in a non-invasive way. 

At the same time, it must contain all the characteristic 

elements of the studied problem which can be 

modeled using the abstraction through which it is 

created a simplified image of the real system. The 

study of the joint mobility of the upper body requires 

the study of the movements of the head and spine. The 

achievement of a complete model of the head - spine 

subsystem implies an approach specific to each 

researcher.  

The authors considered that this biomechanical 

subsystem consists of 3 general anatomical elements: 

the head, the cervical region and the rest of the spine 

considered as being a single element (thoracic region, 

lumbar region, sacral region and coccygeal region) 

(Fig. 1).  
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Fig. 1 Subsystem head, neck, spine 

 

The anthropometric quantities of the three 

elements: 

Segment 

 

Dimension 

Length of 

the element 

Distance 

towards 

the 

proximal 

joint of 

the center 

of gravity 

Total mass 

percentage 

Spine Lcv = 

0.288·H 

a1 = 

0.5·Lcv 

m1 = 

35.5% 

Neck Lg = 0.052·H a2 = 

0.5·Lg 

m2 = 1.5% 

Head Lc = 0.130·H a3 = 

0.5·Lc 

m3 = 6.6% 

Lcv - the length of the spine, 

Lg –the length of the neck, 

Lc – the length of the head, 

a1 – the proximal distance of the center of gravity 

of the spine (element 1), 

a2 – the distance towards the proximal joint of the 

center of gravity of the neck (element 2), 

a3 – the distance towards the proximal joint of the 

center of gravity of the head (element 3), 

m1 – trunk mass (mass of element 1), 

m2 – neck mass (mass of element 2), 

m3 – head mass (mass of element 3). 

 

The masses and position of the center of gravity 

have been estimated for the three elements - head, 

neck and spine - starting from the total mass and the 

dimensions of the segments (through anthropometric 

measurements) [1], [2], [3]. 

 

2. THE METHOD USED IN BIOMECHANICAL 

MODELING OF THE HEAD - SPINE 

SUBSYSTEM 

 

In order to analyze this subsystem from the point 

of view of a mechanical model, the authors considered 

the subsystem as a triple inverted physical pendulum 

consisting of 2 bars articulated with (spine and neck) 

and a sphere (head), (Fig. 2). 

 

 
Fig. 2 The transformation of the subsystem 

into  a physical model – triple inverted 

pendulum 

 

For the presented model, it was considered that the 

three elements are articulated with cylindrical joints 

(hinge) that allow rotational movement only in the 

sagittal plane. There have not been taken into 

consideration any possible slips in the anatomical 

joints. Thus, the proposed physical model has 3 

degrees of freedom on which three disturbing forces 

F1, F2, F3 act, that perform in the centers of gravity of 

the elements, forces which disturb the orthostatic 

position (Fig. 3a and Fig. 3b). 

 

  
(a) (b) 

Fig. 3 Forces which disturb the orthostatic position 
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The coordinates of the center of gravity belonging 

to element 1, CG1 (Fig. 4) [4]: 

𝑥𝐶𝐺1 = 𝑎1 𝑠𝑖𝑛 𝜃1 

𝑦𝐶𝐺1 = 𝑎1 𝑐𝑜𝑠 𝜃1 

The coordinates of the center of gravity belonging 

to element 2, CG2: 

𝑥𝐶𝐺2 = 𝐿𝑐𝑣 𝑠𝑖𝑛 𝜃1 + 𝑎2 𝑠𝑖𝑛 𝜃2 

𝑦𝐶𝐺2 = 𝐿𝑐𝑣 𝑐𝑜𝑠 𝜃1 + 𝑎2 𝑐𝑜𝑠 𝜃2 

The coordinates of the center of gravity belonging 

to element 3, CG3: 

𝑥𝐶𝐺3 = 𝐿𝑐𝑣 sin 𝜃1 + 𝐿𝑔 sin 𝜃2 + 𝑎3 sin 𝜃3 

𝑦𝐶𝐺3 = 𝐿𝑐𝑣 cos 𝜃1 + 𝐿𝑔 cos 𝜃2 + 𝑎3 cos 𝜃3 

 
Figure 4 The coordinates of the center 

of gravity 

 

Velocity determination of the center of gravity of 

element 2, CG2, is obtained by deriving the 

displacement of the center of gravity: 

Velocity determination of the center of gravity of 

element 2, CG2, is obtained by deriving the 

displacement of the center of gravity: 

�̇�𝐶𝐺2 = 𝐿𝑐𝑣�̇�1 cos 𝜃1 + 𝑎2�̇�2 cos 𝜃2 (1) 

�̇�𝐶𝐺2 = 𝐿𝑐𝑣�̇�1 (−sin 𝜃1) + 𝑎2�̇�2 (−sin 𝜃2) (2) 

𝑣𝐶𝐺2
2 = �̇�𝐶𝐺2

2 + �̇�𝐶𝐺2
2=(𝐿𝑐𝑣�̇�1 cos 𝜃1)

2
+ 

+2·(𝐿𝑐𝑣�̇�1𝑎2�̇�2 cos 𝜃1 cos 𝜃2) +

+(𝑎2�̇�2 cos 𝜃2)
2
+(𝐿𝑐𝑣�̇�1 (−sin 𝜃1))

2
+ 

+2·𝐿𝑐𝑣�̇�1 (−sin 𝜃1) 𝑎2�̇�2 (−sin 𝜃2) +

(𝑎2�̇�2 (−sin 𝜃2))
2
=2·𝐿𝑐𝑣

2 �̇�1
2 + 

+2𝐿𝑐𝑣𝑎2�̇�1�̇�2 cos(𝜃2 − 𝜃1) + 𝑎2 �̇�2
2 (3) 

Velocity determination of the center of gravity of 

element 3, CG3: 

�̇�𝐶𝐺3 = 𝐿𝑐𝑣�̇�1 𝑐𝑜𝑠 𝜃1 + 𝐿𝑔�̇�2 𝑐𝑜𝑠 𝜃2 + 𝑎3�̇�3 𝑐𝑜𝑠 𝜃3 

 (4) 

�̇�𝐶𝐺3 = 𝐿𝑐𝑣�̇�1 (−𝑠𝑖𝑛 𝜃1) + 𝐿𝑔�̇�2 (−𝑠𝑖𝑛 𝜃2) +

+𝑎3�̇�3 (−𝑠𝑖𝑛 𝜃3)                       (5) 

𝑣𝐶𝐺3
2 = �̇�𝐶𝐺3

2 + �̇�𝐶𝐺3
2= (𝐿𝑐𝑣�̇�1 𝑐𝑜𝑠 𝜃1)

2
+ 

+(𝐿𝑔�̇�2 𝑐𝑜𝑠 𝜃2)
2
+(𝑎3�̇�3 𝑐𝑜𝑠 𝜃3)

2
+ 

+2(𝐿𝑐𝑣�̇�1𝐿𝑔�̇�2 𝑐𝑜𝑠 𝜃1 𝑐𝑜𝑠 𝜃2) + 

+2(𝐿𝑐𝑣�̇�1 𝑎3�̇�3𝑐𝑜𝑠 𝜃1 𝑐𝑜𝑠 𝜃3)+ 

+2(𝐿𝑔�̇�2𝑎3�̇�3 𝑐𝑜𝑠 𝜃2 𝑐𝑜𝑠 𝜃3)+ 

+(𝐿𝑐𝑣�̇�1 (−𝑠𝑖𝑛 𝜃1))
2
+(𝐿𝑔�̇�2 (−𝑠𝑖𝑛 𝜃2))

2
+ 

+(𝑎3�̇�3 (−𝑠𝑖𝑛 𝜃3))
2
+ 

+2(𝐿𝑐𝑣�̇�1 (−𝑠𝑖𝑛 𝜃1) 𝐿𝑔�̇�2 (−𝑠𝑖𝑛 𝜃2)) + 

+2(𝐿𝑐𝑣�̇�1 (−𝑠𝑖𝑛 𝜃1) 𝑎3�̇�3 (−𝑠𝑖𝑛 𝜃3))+ 

+2(𝐿𝑔�̇�2 (−𝑠𝑖𝑛 𝜃2) 𝑎3�̇�3 (−𝑠𝑖𝑛 𝜃3))= 

= 𝐿𝑐𝑣
2 �̇�1

2 + 𝐿𝑔
2 �̇�2

2 + 𝑎3
2�̇�3

2 + 

+2𝐿𝑐𝑣𝐿𝑔�̇�1�̇�2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 

+𝐿𝑐𝑣𝑎3�̇�1�̇�3 𝑐𝑜𝑠(𝜃3 − 𝜃1) + 𝐿𝑔𝑎3�̇�2�̇�3 𝑐𝑜𝑠(𝜃3 − 𝜃2)             

(6) 

The equation of motion for the proposed model 

According to the Euler-Lagrange equations of the 

second case: 
𝑑

𝑑𝑡
(

𝜕𝐸𝐶

𝜕�̇�𝑖
) − (

𝜕𝐸𝐶

𝜕𝑞𝑖
) = 𝐹𝑖𝑃                  (7) 

where: 

qi – generalized coordinates of the system which 

determines the system of differential equations for the 

proposed model (q1=θ1, q2=θ2, q3=θ3), 

EC – kinetic energy of the mechanical system which 

characterizes the state of motion of solid bodies 

system considered rigid, with connections, 

FiP – generalized disturbing forces. 

Disturbing forces are precisely the forces that 

generate the movement of anatomical elements. These 

forces are developed by the muscles responsible for 

each movement. The muscle behaves like a spring, 

which generates the movement when it contracts 

(agonist muscles), a movement which is moderated by 

the action of other muscles that oppose the movement 

(antagonistic muscles).  

The determination of kinetic energy of the 

mechanical system composed of the 3 solid bodies 

Kinetic energy of the analyzed subsystem consists 

of the rotational kinetic energy and the translational 

kinetic energy of each element: 

𝐸𝐶 = 𝐸𝑐𝑟𝑜𝑡 + 𝐸𝑐𝑡𝑟𝑎𝑛 = 

= 𝐸1 + 𝐸2 + 𝐸3 + 𝐸𝐶𝐺2 + 𝐸𝐶𝐺3             (8) 

where: 

𝐸1 =
1

2
𝐽𝑂1𝜔1 =

1

2
𝐽𝑂1�̇�1

2 (the rotational kinetic 

energy of  body 1),  
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𝐸2 =
1

2
𝐽𝑂2𝜔2 =

1

2
𝐽𝑂2�̇�2

2 (the rotational kinetic 

energy of body 2),  

𝐸3 =
1

2
𝐽𝑂3𝜔3 =

1

2
𝐽𝑂3�̇�3

2 (the rotational kinetic 

energy of  body 3),  

𝐸𝑐𝑔2 =
1

2
𝑚2𝑣𝐶𝑀2

2  (the translational kinetic energy 

of body 2),  

𝐸𝑐𝑔3 =
1

2
𝑚3𝑣𝐶𝑀3

2  (the rotational kinetic energy of 

body 3).  

The determination of the moments of inertia of the 

3 solid bodies: 

The three articulated anatomical elements were 

considered homogeneous bodies having the 

mechanical interpretation as follows: 

• the spine was considered a homogeneous bar 

whose moment of inertia JO1 is: 

𝐽𝑂1 =
𝑚1𝐿𝑐𝑣

2

3
 

• the cervical region (neck) was considered a 

homogeneous bar whose moment of inertia JO2 is: 

𝐽𝑂2 =
𝑚2𝐿𝑔

2

12
 

• the head was considered a sphere whose moment 

of inertia JO3 is: 

𝐽𝑂3 =
2

5
𝑚3𝑅𝐶

2 =
1

10
𝑚3𝐿𝐶

2  

where: 

RC = LC/2 = 0.65·H – the radius of the sphere that 

physically shapes the head  

The kinetic energy of the subsystem becomes: 

𝐸𝐶 =
1

2

𝑚1𝐿𝑐𝑣
2

3
�̇�1

2 +
1

2

𝑚2𝐿𝑔
2

12
�̇�2

2 +
1

2

1

10
𝑚3𝐿𝐶

2 �̇�3
2 + 

+
1

2
𝑚2·[2𝐿𝑐𝑣

2 �̇�1
2 + 2𝐿𝑐𝑣𝑎2�̇�1�̇�2 𝑐𝑜𝑠(𝜃2 − 𝜃1) +

𝑎2 �̇�2
2] +

1

2
𝑚3·[𝐿𝑐𝑣

2 �̇�1
2 + 𝐿𝑔

2 �̇�2
2 + 𝑎3

2�̇�3
2 +

2𝐿𝑐𝑣𝐿𝑔�̇�1�̇�2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 𝐿𝑐𝑣𝑎3�̇�1�̇�3 𝑐𝑜𝑠(𝜃3 −

𝜃1) + 𝐿𝑔𝑎3�̇�2�̇�3 𝑐𝑜𝑠(𝜃3 − 𝜃2)] =
1

2
(

𝑚1𝐿𝑐𝑣
2

3
+

+2𝑚2𝐿𝑐𝑣
2 + 𝑚3𝐿𝑐𝑣

2 ) �̇�1
2 +

1

2
(

𝑚2·𝐿𝑔
2

12
+ 𝑚2𝑎2 +

+𝑚3𝐿𝑔
2 ) �̇�2

2 +
1

2
(

1

5
𝑚3𝐿𝐶

2 + 𝑚3𝑎3
2) �̇�3

2 +

+
1

2
·[2𝑚2𝐿𝑐𝑣𝑎2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 2𝑚3𝐿𝑐𝑣𝐿𝑔 𝑐𝑜𝑠(𝜃2 −

−𝜃1)]�̇�1�̇�2 +
1

2
·[𝑚3𝐿𝑐𝑣𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃1)]�̇�1�̇�3 +

+
1

2
·[𝑚3𝐿𝑔𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃2)]�̇�2�̇�3                        (9) 

meaning, 

𝐸𝐶 =
1

2
(𝑚11�̇�1

2 + 𝑚22�̇�2
2 + 𝑚33�̇�3

2 + 2𝑚12�̇�1�̇�2 +

+2𝑚13�̇�1�̇�3 + 2𝑚23�̇�2�̇�3)  (10) 

Comparing the general form of the kinetic energy 

with the kinetic energy of the analyzed subsystem, 

[5] there can be determined the terms of the inertia 

matrix [𝑀]: 

𝑚11 =
𝑚1𝐿𝑐𝑣

2

3
+ 2𝑚2𝐿𝑐𝑣

2 + 𝑚3𝐿𝑐𝑣
2  

𝑚12 = 𝑚2𝐿𝑐𝑣𝑎2 cos(𝜃2 − 𝜃1) +
+ 𝑚3𝐿𝑐𝑣𝐿𝑔 cos(𝜃2 − 𝜃1) 

𝑚13 =
1

2
𝑚3𝐿𝑐𝑣𝑎3 cos(𝜃3 − 𝜃1) 

𝑚21 = 𝑚2𝐿𝑐𝑣𝑎2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 

+𝑚3𝐿𝑐𝑣𝐿𝑔 𝑐𝑜𝑠(𝜃2 − 𝜃1) 

𝑚22 =
𝑚2𝐿𝑔

2

12
+ 𝑚2𝑎2 + 𝑚3𝐿𝑔

2  

𝑚23 =
1

2
𝑚3𝐿𝑔𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃2) 

𝑚31 =
1

2
𝑚3𝐿𝑐𝑣𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃1) 

𝑚32 =
1

2
𝑚3𝐿𝑔𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃2) 

𝑚33 =
1

5
𝑚3𝐿𝐶

2 + 𝑚3𝑎3
2 

Determination of the potential energy of 

mechanical system composed of 3 solid bodies and 3 

springs 

The potential energy of the analyzed subsystem 

consists of the potential energy of each element and 

the potential energies of the limitative springs [6], [7]: 

𝐸𝑃 = 𝐸𝑝1 + 𝐸𝑝2 + 𝐸𝑝3 + 2𝐸𝑝𝑎1 + 2𝐸𝑝𝑎2 + 2𝐸𝑝𝑎3

 (11) 

where: 

𝐸𝑝1 = 𝑚1𝑔𝛥ℎ1 = (potential energy of body 1), 

𝐸𝑝2 = 𝑚2𝑔𝛥ℎ2 (potential energy of body 2), 

𝐸𝑝3 = 𝑚3𝑔𝛥ℎ3 (potential energy of body 3), 

where: 

𝛥ℎ1 = 𝑎1(1 − cos 𝜃1) 

𝛥ℎ2 = 𝐿𝑐𝑣(1 − cos 𝜃1) + 𝑎2(1 − cos 𝜃2) 

𝛥ℎ3 = 𝐿𝑐𝑣(1 − cos 𝜃1) + 𝐿𝑔(1 − cos 𝜃2) + 

+𝑎3(1 − cos 𝜃3) 

meaning 

𝐸𝑝1 = 𝑚1𝑔𝛥ℎ1 = 𝑚1𝑔𝑎1(1 − cos 𝜃1) 

𝐸𝑝2 = 𝑚2𝑔𝛥ℎ2 = 

= 𝑚2𝑔[𝐿𝑐𝑣(1 − cos 𝜃1) + 𝑎2(1 − cos 𝜃2)] 

𝐸𝑝3 = 𝑚3𝑔𝛥ℎ3 = 𝑚3𝑔[𝐿𝑐𝑣(1 − cos 𝜃1) + 

+𝐿𝑔(1 − cos 𝜃2) + 𝑎3(1 − cos 𝜃3)] 

For small values of angle θ, the substitution 

sin 𝜃 ≈ 𝜃 is accepted, meaning sin
𝜃

2
≈

𝜃

2
 resulting: 

𝑐𝑜𝑠 𝜃 = 1 − 2 𝑠𝑖𝑛2 𝜃

2
 →1 − 𝑐𝑜𝑠 𝜃 = 2 𝑠𝑖𝑛2 𝜃

2
= 

= 2
𝜃2

4
  → 1 − 𝑐𝑜𝑠 𝜃 ≈

𝜃2

2
 

𝐸𝑝1 =
1

2
𝑚1𝑔𝑎1𝜃1

2 

𝐸𝑝2 =
1

2
𝑚2𝑔(𝐿𝑐𝑣𝜃1

2 + 𝑎2𝜃2
2) 

𝐸𝑝3 =
1

2
𝑚3𝑔(𝐿𝑐𝑣𝜃1

2 + 𝐿𝑔𝜃2
2 + 𝑎3𝜃3

2) 

𝐸𝑝𝑎1 =
1

2
𝑘1(𝑥𝑖

2 − 𝑥𝑓1
2 ) (potential energy of spring 1), 

𝐸𝑝𝑎2 =
1

2
𝑘2(𝑥𝑖

2 − 𝑥𝑓2
2 ) (potential energy of spring 2), 

𝐸𝑝𝑎3 =
1

2
𝑘3(𝑥𝑖

2 − 𝑥𝑓3
2 ) (potential energy of spring 3), 

where: 

𝑘 𝑖– the coefficient of elasticity of the spring „i” 

(muscle), 

𝑥𝑖 – the initial length of the spring, 

𝑥𝑓1 – the final length of spring 1, 
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𝑥𝑓2 – the final length of spring 2, 

𝑥𝑓3 – the final length of spring 3, 

The initial lengths of the springs are: 

𝑥𝑖 = 𝑥𝑓1 + 𝛿1 

𝑥𝑖 = 𝑥𝑓2 + 𝛿2 

𝑥𝑖 = 𝑥𝑓3 + 𝛿3 

where: 

𝛿1 = 𝑎1 sin 𝜃1 – the displacement of spring 1, 

𝛿1 = 𝑎2 sin 𝜃2 + 𝐿𝑐𝑣 sin 𝜃1  – the displacement of 

spring 2, 

𝛿3 = 𝑎3 sin 𝜃3 + 𝐿𝑔 sin 𝜃2 + 𝐿𝑐𝑣 sin 𝜃1  – the 

displacement of spring 3, 

For small values of angle θ, the substitution 

sin 𝜃 ≈ 𝜃 is accepted, meaning 

𝛿1 = 𝑎1𝜃1 

𝛿1 = 𝑎2𝜃2 + 𝐿𝑐𝑣𝜃1 

𝛿3 = 𝑎3𝜃3 + 𝐿𝑔𝜃2 + 𝐿𝑐𝑣𝜃1 

Therefore, potential energies of the springs 

become [8]: 

𝐸𝑝𝑎1 =
1

2
𝑘1(𝑥𝑓1

2 + 2𝑥𝑓1𝛿1 + 𝛿1
2 − 𝑥𝑓1

2 )  

𝐸𝑝𝑎1 =
1

2
𝑘1(2𝑥𝑓1𝑎1𝜃1 + 𝑎1

2𝜃1
2) 

𝐸𝑝𝑎2 =
1

2
𝑘2(𝑥𝑓2

2 + 2𝑥𝑓2𝛿2 + 𝛿2
2 − 𝑥𝑓2

2 )  

𝐸𝑝𝑎2 =
1

2
𝑘2(2𝑥𝑓2𝑎2𝜃2 + 2𝐿𝑐𝑣𝜃1 + 𝑎2

2𝜃2
2 + 

+2𝑎2𝐿𝑐𝑣𝜃1𝜃2 + 𝐿𝑐𝑣
2 𝜃1

2)  

𝐸𝑝𝑎3 =
1

2
· 𝑘3 · (𝑥𝑓3

2 + 2𝑥𝑓3𝛿3 + 𝛿3
2 − 𝑥𝑓3

2 )  

𝐸𝑝𝑎3 =
1

2
𝑘3(2𝑥𝑓3𝑎3𝜃3 + 2𝑥𝑓3𝐿𝑔𝜃2 + 2𝑥𝑓3𝐿𝑐𝑣𝜃1 + 

+𝑎3
2𝜃3

2 + 𝐿𝑔
2 𝜃2

2 + 𝐿𝑐𝑣
2 𝜃1

2 + 

+2𝑎3𝐿𝑔𝜃2𝜃3 + 2𝑎3𝐿𝑐𝑣𝜃1𝜃3 + 2𝐿𝑔𝐿𝑐𝑣𝜃1𝜃2 + 𝐿𝑐𝑣
2 𝜃1

2)  

Substituting in relation (11), the potential energy 

of the system can be written: 

𝐸𝑃 =
1

2
𝑚1𝑔𝑎1𝜃1

2 +
1

2
𝑚2𝑔(𝐿𝑐𝑣𝜃1

2 + 𝑎2𝜃2
2) +

1

2
𝑚3𝑔(𝐿𝑐𝑣𝜃1

2 + 𝐿𝑔𝜃2
2 + 𝑎3𝜃3

2) + 2
1

2
𝑘1(2𝑥𝑓1𝑎1𝜃1 +

𝑎1
2𝜃1

2) + 2
1

2
𝑘2(2𝑥𝑓2𝑎2𝜃2 + 2𝐿𝑐𝑣𝜃1 + 𝑎2

2𝜃2
2 +

2𝑎2𝐿𝑐𝑣𝜃1𝜃2 + 𝐿𝑐𝑣
2 𝜃1

2) + 2
1

2
𝑘3(2𝑥𝑓3𝑎3𝜃3 +

2𝑥𝑓3𝐿𝑔𝜃2 + 2𝑥𝑓3𝐿𝑐𝑣𝜃1 + 𝑎3
2𝜃3

2 + 𝐿𝑔
2 𝜃2

2 + 𝐿𝑐𝑣
2 𝜃1

2 +

2𝑎3𝐿𝑔𝜃2𝜃3 + 2𝑎3𝐿𝑐𝑣𝜃1𝜃3 + 2𝐿𝑔𝐿𝑐𝑣𝜃1𝜃2 + 𝐿𝑐𝑣
2 𝜃1

2)  

𝐸𝑃 =
1

2
[𝑚1𝑔𝑎1 + 𝑚2𝑔𝐿𝑐𝑣 + 𝑚3𝑔𝐿𝑐𝑣 + 2𝑘1𝑎1

2 +

+2𝑘2𝐿𝑐𝑣
2 + 4𝑘3𝐿𝑐𝑣

2 ]𝜃1
2 + +

1

2
[𝑚2𝑔𝑎2 + 𝑚3𝑔𝐿𝑔 +

+2𝑘2𝑎2
2 + 2𝑘3𝐿𝑔

2 ]𝜃2
2 +

1

2
[𝑚3𝑔𝑎3 + 2𝑘3𝑎3

2]𝜃3
2 +

+
1

2
[4𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣]𝜃1𝜃2 +

+
1

2
[4𝑘3𝑎3𝐿𝑔]𝜃2𝜃3 +

1

2
[4𝑘3𝑎3𝐿𝑐𝑣]𝜃1𝜃3 +

+
1

2
[4𝑘1𝑥𝑓1𝑎1 + 4𝑘2𝐿𝑐𝑣 + 4𝑘3𝑥𝑓3𝐿𝑐𝑣]𝜃1 +

+
1

2
[4𝑘2𝑥𝑓2𝑎2 + 4𝑘3𝑥𝑓3𝐿𝑔]𝜃2 +

1

2
[4𝑘3𝑥𝑓3𝑎3]𝜃3  

In turn, deriving the relation of the potential energy 

of the system according to the three generalized 

coordinates, θ1, θ2, θ3, and analyzing for the initial 

position of the system when the generalized 

coordinates are equal to zero, it is obtained xfi = 0 and 

the potential energy becomes: 

𝐸𝑃 =
1

2
[𝑚1𝑔𝑎1 + 𝑚2𝑔𝐿𝑐𝑣 + 𝑚3𝑔𝐿𝑐𝑣 + 2𝑘1𝑎1

2 +

2𝑘2𝐿𝑐𝑣
2 + 4𝑘3𝐿𝑐𝑣

2 ]𝜃1
2 +

1

2
[𝑚2𝑔𝑎2 + 𝑚3𝑔𝐿𝑔 +

2𝑘2𝑎2
2 + 2𝑘3𝐿𝑔

2 ]𝜃2
2 +

1

2
[𝑚3𝑔𝑎3 + 2𝑘3𝑎3

2]𝜃3
2 +

+
1

2
[4𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣]𝜃1𝜃2 +

+
1

2
[4𝑘3𝑎3𝐿𝑔]𝜃2𝜃3 +

1

2
[4𝑘3𝑎3𝐿𝑐𝑣]𝜃1𝜃3  

Identifying the terms in the general form of the 

potential energy, there are determined the terms of 

the rigidity matrix [5]: 

𝑘11 = 𝑚1𝑔𝑎1 + 𝑚2𝑔𝐿𝑐𝑣 + 𝑚3𝑔𝐿𝑐𝑣 + 

+2𝑘1𝑎1
2 + 2𝑘2𝐿𝑐𝑣

2 + 4𝑘3𝐿𝑐𝑣
2  

𝑘12 = 2𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣  

𝑘13 = 2𝑘3𝑎3𝐿𝑐𝑣  

𝑘21 = 2𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣  

𝑘22 = 𝑚2𝑔𝑎2 + 𝑚3𝑔𝐿𝑔 + 2𝑘2𝑎2
2 + 

+2𝑘3𝐿𝑔
2  

𝑘23 = 2𝑘3𝑎3𝐿𝑔 

𝑘31 = 2𝑘3𝑎3𝐿𝑐𝑣  

𝑘32 = 2𝑘3𝑎3𝐿𝑔 

𝑘33 = 𝑚3𝑔𝑎3 + 2𝑘3𝑎3
2 

The ecuation of movement for the analyzed model 

can be written in matrix form [9]: 

[𝑀] {

�̈�1

�̈�2

�̈�3

} + [𝐾] {

𝜃1

𝜃2

𝜃3

} = [𝐹𝑖𝑃] 

and analytical form: 

{

(𝑚11 + 𝑚12 + 𝑚13)�̈�1 + (𝑘11 + 𝑘12 + 𝑘13)𝜃1 = 𝐹1

(𝑚21 + 𝑚22 + 𝑚23)�̈�2 + (𝑘21 + 𝑘22 + 𝑘23)𝜃2 = 𝐹2

(𝑚31 + 𝑚32 + 𝑚33)�̈�3 + (𝑘31 + 𝑘32 + 𝑘33)𝜃3 = 𝐹3

 

Substituting the terms of the inertia matrix and those of 

the stiffness matrix, it is obtained the system of 

equations formed by the relations (13), (14), (15) which 

represent exactly the equations of the analyzed 

subsystem. 

[
𝑚1𝐿𝑐𝑣

2

3
+ 2𝑚2𝐿𝑐𝑣

2 + 𝑚3𝐿𝑐𝑣
2 + 

+𝑚2𝐿𝑐𝑣𝑎2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 𝑚3𝐿𝑐𝑣𝐿𝑔 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 

+
1

2
𝑚3𝐿𝑐𝑣𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃1)] �̈�1 + 

+(𝑚1𝑔𝑎1 + 𝑚2𝑔𝐿𝑐𝑣 + 𝑚3𝑔𝐿𝑐𝑣 + 2𝑘1𝑎1
2 +

+2𝑘2𝐿𝑐𝑣
2 + 4𝑘3𝐿𝑐𝑣

2 + 2𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣 +

+2𝑘3𝑎3𝐿𝑐𝑣) 𝜃1 = 𝐹1    (13) 

[𝑚2𝐿𝑐𝑣𝑎2 𝑐𝑜𝑠(𝜃2 − 𝜃1) + 𝑚3𝐿𝑐𝑣𝐿𝑔 𝑐𝑜𝑠(𝜃2 −

𝜃1) +
𝑚2𝐿𝑔

2

12
+ 𝑚2𝑎2 + 𝑚3𝐿𝑔

2 + 

+
1

2
𝑚3𝐿𝑔𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃2)] �̈�2 + 
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+(2𝑘2𝑎2𝐿𝑐𝑣 + 4𝑘3𝐿𝑔𝐿𝑐𝑣 + 𝑚2𝑔𝑎2 + 𝑚3𝑔𝐿𝑔 +

+2𝑘2𝑎2
2 + 2𝑘3𝐿𝑔

2 + 2𝑘3𝑎3𝐿𝑔)𝜃2 = 𝐹2       (14) 

[
1

2
𝑚3𝐿𝑐𝑣𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃1) + 

+
1

2
𝑚3𝐿𝑔𝑎3 𝑐𝑜𝑠(𝜃3 − 𝜃2) +

1

5
𝑚3𝐿𝐶

2 + 𝑚3𝑎3
2] �̈�3 +

+(2𝑘3𝑎3𝐿𝑐𝑣 + 2𝑘3𝑎3𝐿𝑔 + 𝑚3𝑔𝑎3 + 2𝑘3𝑎3
2)𝜃3 = 𝐹3 

 (15) 

 

3. CONCLUSIONS 

 
The advantages of mathematical modeling stand 

out, especially in the case of complex biomechanical 

systems when it is necessary to determine a series of 

parameters using non-invasive methods. Thus, the 

investigation of a particular subsystem is possible if 

real experiments cannot be performed. At the same 

time, the use of the model allows iteration on various 

anthropometry whenever needed in order to perform 

an analysis as accurate as possible. Also, by modifying 

the parameters of the biomechanical system, the 

extreme values of the variables can be established, 

values which would correspond to some limit 

anatomical positions. It can be concluded that the 

study based on models is much more efficient both 

qualitatively and economically (low costs, reduced 

time, etc.) 

The analytical model head-neck-spine can be used 

when the angular variations of the studied anatomical 

elements (θ1, θ2, θ3) can be determined. This thing is 

possible due to a series of computer applications 

which use markers (Kinovea) or with the help of some 

sensors that can determine angular displacements. 

The developed model can determine the values of 

the forces responsible for the movement of the head, 

neck or trunk, but also the restorative forces 

responsible for the return of the body to the orthostatic 

position. 

For the future, we intend to make a parameterized 

analysis of this analytical model in order to establish 

the values of disturbing and/or restorative forces 

according to various anthropometries. 
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