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ABSTRACT 
This paper presents the succession of heat and/or mass driven natural 

convection processes along a uniform temperature and concentration vertical wall 

embedded in a Darcy doubly stratified porous medium. Using the scale analysis of 

the governing equations, three possible heat transfer regimes are discovered, 

presented and quantified through the temperature, concentration and velocity 

boundary layer thickness, magnitude and location. If ST and SC are the porous 

medium thermal and concentration stratification coefficients and if N is the 

buoyancy ratio, then we can encounter these possibilities: a heat driven convection 

regime (HDC) along the wall if TC SS  ; a mass driven convection regime (MDC) 

along the wall if 1NSS CT  ; a HDC−MDC succession in all the other cases. 

The finite difference method is used to solve the governing equations and to verify 

the results on the heat transfer regimes succession for one particular case. 
 

KEYWORDS: porous medium, natural convection, double diffusion, scale 

analysis, finite difference method 
 

 

1. INTRODUCTION 
The study of the natural convection process triggered 

by a vertical impermeable wall embedded in a Darcy 

porous medium has received a great consideration in 

the last decades [1-12]. The particular case of a 

constant temperature [1-6] and concentration [7-12] 

wall was analyzed while the environment was 

considered as being thermally [3-6] or doubly [12] 

linearly stratified.  
This paper considers the case of a vertical 

impermeable wall situated in a doubly stratified 

Darcy porous medium. The temperature and the 

concentration of a certain constituent are constant at 

the wall. Using the scale analysis method, this paper 

establishes the heat and mass driven natural 

convection regimes succession along the wall as well 

as the point of the wall where the reverse flow occurs.  
 

2. MATHEMATICAL MODEL 
 

Figure 1 presents the dimensional (Fig. 1(a)) and the 

dimensionless (Fig. 1(b)) problem. The x ordinate lies 

along the wall, while the abscissa of the co-ordinate 

system is normal to the wall.  

 
Fig. 1: The vertical wall and the associated coordinate 

system; (b) the dimensionless domain of the problem.  

The temperature and the concentration at the wall are 
constant, Tw and Cw, respectively.  
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The ambient temperature and concentration 

vary linearly: xsTT T0,x,    and 

xsCC C0,x,   , where the stratification 

coefficients are: dx/dTs x,T   and 

dx/dCs x,C  . The fluid density is a variable 

property; it obeys the Boussinesq approximation: 

    0,C0,T0 CCTT1   . 

The equilibrium governing equations: 
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require the following boundary conditions: 

 

0u  , wTT  ,  wCC   at 0y    
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In Eqs. (1-5), u and v are the horizontal and 

the vertical velocities, t is time, T is temperature, C is 

the concentration of a constituent,   is density, g is 

the gravitational acceleration, t  and c  are 

temperature and concentration expansion coefficients, 

  is thermal diffusivity, while D is mass diffusivity, 

h is the height of the computational domain. The 

dimensionless variables: 
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lead us to the dimensionless governing equations: 
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(10) 

where     /LTTKgRa 3
0,wt  is the 

Rayleigh number,  D/Le   is the Lewis number 

and     0,wt0,wc TT/CCN    is the 

buoyancy ratio,   0,wTT TT/LsS   and  

  0,wCC CC/LsS   are the thermal and the 

concentration dimensionless stratification parameters.  

The dimensionless boundary conditions are: 

 

0U  , XS1 T  , XS1 C   at 

0Y                                               

0V  , 0  as Y                                                                              

0V  , 0  at 0X                                                                                 

0
XXX

V

X

U

2

2

2

2

2

2

2

2




















 at HX   

 
 

 

 

 

 

(11) 

 

The dimensionless conservation equations, 

Eqs. (7)-(10), will be analyzed using the scale 

analysis method [13] in section 3, while section 4 

verifies this analysis using the finite differences 

method [14, 15] applied to the mathematical model. 
  

3. SCALE ANALYSIS 
 

3.1. The natural convection regime types 

 

The scale analysis [13] assumption for both 

temperature and concentration boundary layers, 

XT   and XC  , allows us to neglect the 

X/U   term in Eq. (8): 
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We integrate Eq. (12) from 0Y   to infinity. 

The vertical velocity order of magnitude becomes:  

 

    NRaRa~V , (13) 

where   and   are the variation of the 

temperature and the concentration values across the 

boundary layers thickness. The first term on the right 

hand side of this Eq. (13), VT, the vertical velocity 

due to the volumetric thermal expansion, can be 
written as: 

 

    XS1RaRa~V TT  , (14) 

while the second term on the right hand side of Eq. 

(13), VC, the vertical velocity due to the volumetric 

concentration expansion, becomes: 

   XS1NRa~NRa~V CC   (15) 
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As a consequence, the vertical velocity scale 

is:  

 

   XS1NRaXS1Ra~V cT   (16) 

 

The relative magnitude of VT and VC, in Eq. 

(16), defines the natural convection type: HDC (heat 

driven convection) if CT VV   or MDC (mass driven 

convection) if TC VV  .  

Throughout the scale analysis of this system, 

the vertical velocity receives the form: 

 

    2c1T XS1NRaXS1Ra~V  , (17) 

 

where 1  is 1.0 in the HDC regime and 0.0 

otherwise. The reverse is true for 2 .  

The analysis of Eq. (16) shows the following 

possibilities: 

 

─ if  CT S/1,S/1minX  , both terms of the right 

hand side of Eq. (16) are positive. We have a mass 

driven convection regime (MDC) if TC VV   or  
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flow if  
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(19) 

 

X2 is the location on the wall where the scale analysis 

ceases to be valid (UL=" upper limit ").      

                                                    

 
Fig. 2: The heat and the mass driven natural convection regimes sequence. a) 1S/S CT  ; b) N1S/S CT   

and NS/S1 CT  ; c) 1NS/S CT  . 

 

The two cases: CT SS   and CT SS   will be 

analyzed separately: 

a) if CT SS   (see Fig. 2a): 21 XX   and the entire 

 UL,0  domain is a HDC region; 

b) if CT SS  , two situations are encountered: 

b1) N1S/S CT   and NS/S1 CT   

(Fig. 2b): the  1X,0  region is a HDC 

region, while the  UL ,X1  region is a 

MDC region at the equilibrium state; 

b2) 1NS/S CT   (Fig. 2c): 0X 1   and the 

 UL,0  domain is a MDC region. 

Having in view that the maximum vertical 
velocity is encountered at the wall, two conclusions 

can be drawn from the scale analysis presented above: 

1. if CT SS  , around the TS/1X   abscissa, 

negative values of the dimensionless temperature, 

 , should be registered no matter the values of all 

the other parameters; the wall temperature 0  at 

this particular abscissa; 

2. if TC SS  , around the CS/1X   abscissa, 

negative values of the dimensionless concentration, 

 , should be registered no matter the values of all 

the other parameters; the wall dimensionless 

concentration is ? 0  at this particular point. 

 

3.2. The scale analysis of the boundary layer region 

 
3.2.1.  Scale analysis of the transient state 

In the first moments, the equilibrium between 

inertia and diffusion in the y direction governs the 
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Eqs. (9) and (10). The scale analysis reveals the order 

of magnitude of the temperature and concentration 

boundary layer thicknesses:   

 
2/1

T ~  ;  2/12/1
C Le/~   (20) 

 

3.2.2.  Scale analysis of the equilibrium concentration 

boundary layer 

In the concentration field, the equilibrium is 
attained when the vertical convection term has the 

same order of magnitude as the horizontal diffusion 

term. Depending on the dominant vertical convection 

term, we encounter two situations:  

1. the X/V   term is dominant in Eq. (10). The 

equilibrium state imposes: 2
C/Le/~X/V  , 

an equality that defines the equilibrium time and 

concentration boundary layer thickness: 
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(21) 

     2C1TC,ech XS1NXS1/RaLe/X~  (22) 

 

2. the CSV   term is dominant in Eq. (10). The 

equilibrium state is realized when: 
22
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time and the concentration boundary layer thickness: 
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3.2.3. Scale analysis of the equilibrium temperature 

boundary layer  

Proceeding similarly, the equilibrium time and 

boundary layer thickness of the temperature field are 

established: 

1. when the X/V   term is dominant in Eq. (9): 
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3.2.4. The TST and CSC transition 
Figure 3 shows the general shape of the 

  TS/X/   variation. If we analyze the  1,0   

region, where the TVS  term is dominant in Eq. (9), at 

equilibrium, the equality of the order of magnitude of 
the vertical convection and the horizontal diffusion 

imposes 22
T Y/~VS   or  2

11T /~VS  . But 

at the point "1", TSX/   or T1 SX/  .  

Consequently,  

 
2
1TT /XS~SV  . (29) 

 

 
Fig. 3: The   TS/X/   variation and the TST 

transition for a Dirichlet boundary condition. 

 

Similarly, in the region situated beyond the 

point "2" , at the right side of the boundary layer, the 

equilibrium state requires: 

    222T2 /~S/V  . In the point 

"2", TSx/   or T2 SX/  . We obtain: 

 

  XS~/VS T
3

2T   (30) 

 

As we are interested in finding the abscissa, X 

TST, where the TST transition occurs, we are 
imposing: 

 
2

T /~SV   (31) 

21   (32) 

 

From Eq. (30) and Eq. (31), we obtain: 

 

TTStT S/mS/156.0X  , (33) 

 

where m is a constant number: 156.0m  .  

Similarly, the CSC transition is marked by 
the abscissa  

 

CCScC S/mS/156.0X   (34) 

 

3.2.5. The validity of the scale analysis 

The analysis of Fig. 2 and of the points 

TS/m  and CS/m , where the TST and CSC 

transitions take place, shows that these abscissas are 

placed in the HDC regions for the cases presented by 
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Fig. 2(a) and Fig. 2(b) and only in the case of Fig. 

2(c) these transitions take place in the MDC regime. 

 

 If 1NS/S CT  , we have to impose the 

following conditions:   TCT,ech S/156.0  and 

  CCC,ech S/156.0 . Using the results of the 

scale analysis, the validity of the scale analysis is 

bounded by the condition: 

 

  TCT S/mS1m/SRaN   (35) 

 

 In all the other cases, the validity of the scale 

analysis requires:   TTT,ech S/156.0  and 

  CC,ech S/156.0T  . Eq. (36) is the result: 
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4. NUMERICAL MODELING  
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dimensionless stream-function formulation of the 

governing equations is given by Eqs. (37)−(39): 
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while the boundary conditions are: 
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The governing equations, Eqs. (37)−(39), 

subjected to the boundary conditions Eq. (40), were 

solved numerically using the finite difference method, 

the higher order hybrid scheme [14], [15]. The 

program was tested with good results (see Table 1) 
using the boundary conditions and the results already 

published in the literature [16, 17].  

 

 

Table 1. Nusselt and Sherwood number compared 

with the results of the scientific literature [16, 17]. 

  Ra 400 100 

Reference  Le   

Getachew e.a. [16] Nu/Sh 1 7.58 3.07 

This work Nu/Sh 7.52 

 

3.01 

 

Getachew e.a. [16] Nu 
Sh 

10 7.58 
27.90 

3.07 
13.10 

Benacer e.a. [17] Nu 

Sh 

7.77 

29.36 

3.11 

13.24 

This work Nu 

Sh 

7.75 

28.27 

3.02 

12.83 

 

5. RESULTS AND DISCUSSIONS 
 

An numerical example is presented for: 600Ra  , 

0.1B  , 1Le  , 07.0SC   and 05.0ST  . A 

computational domain of 0.4 x 30.0 was divided 

uniformly using 41 x 3001 points.  

The iterative process required for solving the 

conservation equations was interrupted when a 
relative error of 10-6 of all the variables (temperature, 

concentration and stream function) is attained. Figure 

4 presents the temperature (Fig. 4(a)), concentration 

(Fig. 4(b)),, vertical velocity (Fig. 4(c)), 

TS/)X/(   (Fig. 4(d)), CS/)X/(   (Fig. 

4(e)) contour plots as well as the 

   CT S1/N/S1  −X plot (Fig. 4(f)).  

We notice negative values for the 

dimensionless temperature (Fig. 4(a)) and 

concentration (Fig. 4(b)) beyond 0.20S/1 T   and 

28.14S/1 C   abscissas, respectively.  

The point on the wall where the vertical 

velocity becomes null, the upper limit (UL), is given 

by the scale analysis as being 

67.16)NSS/()N1( CT  , and this value is 

encountered in the finite difference analysis results 

(Fig. 4(c)). We notice, also, (Fig. 4(d)) that 

TS/)X/(   becomes smaller than 1.0 at the 

abscissa 3X  , while the scale analysis indicates a 

good approximation of 11.3S/m T  . 

Similarly, Fig. 4(e) shows a decrease of 

CS/)X/(   bellow 1.0 for 2X  , while an 

abscissa of 22.2S/m C   is indicated successfully 

by the scale analysis. The fact that we have only a 

HDC regime, in this example, is shown clearly by 

Fig. 4(f) as    CT S1/N/S1   has values greater 

than 1.0 in every point of the wall.  
Three heat transfer regimes are encountered: 

HDCT-C, in the  CS/m,0  region, followed by a 

HDCT-Sc, regime in the  TC S/m,S/m  region, and 

a HDCSt-Sc regime in the  UL,S/m T  region.  

Three abscissas were considered for each 

region and unscaled and scaled temperature, 
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concentration and vertical velocity graphs are 

presented by Figs. 5-7.  

 

 
Fig. 4: The temperature (a), the concentration (b), the vorticity (c),   TS/X/   (d),    CS/X/  (e) fields 

and the    CT S1/N/S1  −X plot (f) for 600Ra  , 0.1B  , 1Le  , 07.0SC   and 05.0ST  . 

 
Fig. 5: The temperature, concentration and vertical velocity field variation as a function of Y co-ordinate  

(Fig. 5(a)−(c)), and the scaled temperature, concentration and vertical velocity field variation as a function of the 

scaled  ordinate (Fig. 5(d)−(f)), for four HDCC,T abscissas: 0.5, 1.0, 1.5 and 2.0, 600Ra  , 0.1B  , 1Le  , 

07.0SC   and 05.0ST  . 
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Fig. 6: The temperature, concentration and vertical velocity field variation as a function of Y co-ordinate 

 (Fig. 6(a)−(c)), and the scaled temperature, concentration and vertical velocity field variation as a function of 

the scaled  ordinate (Fig. 6(d)−(f)), for three HDCSc,T abscissas: 2.3, 2.6 and 3.0, 600Ra  , 0.1B  , 1Le  , 

07.0SC   and 05.0ST  . 

 
Fig. 7: The temperature, concentration and vertical velocity field variation as a function of Y co-ordinate 

 (Fig. 7(a)−(c)), and the scaled temperature, concentration and vertical velocity field variation as a function of 

the scaled  ordinate (Fig. 7(d)−(f)), for three HDCSc,St abscissas: 4.0, 5.0 and 6.0, 600Ra  , 0.1B  , 1Le  , 

07.0SC   and 05.0ST  . 
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Figure 5. presents temperature (Fig. 5(a)), 

concentration (Fig. 5(b)), vertical velocity (Fig.5(c)) 

as well as their scaled versions (Figs. 5(d-f)) for four 

abscissas: 0.5, 1.0, 1.5, 2.0, in the HDCT-C region. 

Figure 6 presents the temperature (Fig. 6(a)), 

concentration (Fig. 6(b)), vertical velocity (Fig. 6(c)) 

as well as their scaled versions (Figs. 6(d-f)) for the 

abscissas: 2.3, 2.6, 3.0, situated in the HDCT-Sc 

region. 

Figure 7 presents temperature (Fig. 7(a)), 

concentration (Fig. 7(b)), vertical velocity (Fig. 7(c)) 

as well as their scaled versions (Figs. 7(d-f)) for three 
abscissas: 4.0, 5.0 and 6.0, situated in the HDCSt-Sc 

region. 

The collapse of all the scaled graphs shows the 

validity of the scale analysis for all the three regions 

encountered in this example. 

 

6. CONCLUSIONS 
 

This paper establishes heat and/or mass driven 

convection regimes that drive the steady state natural 

convection near a vertical impermeable wall of 

constant temperature and concentration embedded in 

a Darcy doubly stratified porous medium. 

The scale analysis of the system shows the 

following situations that we can encounter: 

- if TC SS   only a HDC regime attains the 

equilibrium state; 

- if 1NS/S CT   only a MDC regime can be 

registered, while  

- in all the other cases a HDC − MDC regimes 
succession is encountered. 

These results were verified with good results 
for one particular case using the finite difference 

method solutions of the governing equations. 

The maps of the convection regimes give us a 

better understanding of the natural convection 

processes for the case analyzed in this paper. 
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