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ABSTRACT 
This paper presents the analysis of the natural convection in the boundary layer 

of a vertical impermeable semi-infinite wall of constant mass flux and temperature 

embedded in a Newtonian fluid-saturated Darcy mass-stratified porous medium. 
Using the scale analysis method, this work determines the two possible successions 

of the heat and mass driven convection regimes that attain the equilibrium state 

along the wall. The finite difference method applied to the mathematical model 

verifies these successions for two particular parameter sets. 
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1. INTRODUCTION 
 

A vertical impermeable semi-infinite wall embedded 

in a Newtonian fluid-saturated porous media triggers 

a natural convection process that received a great 

consideration from the scientific community in the 

last decades [1−14] due to its practical applications: 

materials processing, geothermal engineering, food 

processing, drying of porous solids, cooling of 
nuclear reactors, etc. 

Depending on the specific application, the 

scientists considered different wall properties: a 

constant [1,2] or a variable [3,4] temperature, a 

constant or a variable [5] heat flux, while the 

concentration of a certain constituent at the wall was 

considered as having a constant [6−10] value or a 

variable rate (mass flux). The environment was 

treated as being uniform, thermally [1−3, 6,11−13] or 

doubly stratified [14]. This work considers the 

particular case of a vertical impermeable semi-infinite 

wall of constant mass flux and temperature embedded 
in a Newtonian fluid-saturated Darcy mass-stratified 

porous medium. The scale analysis of the system [15] 

establishes the two possible successions of heat and 

mass driven convection regimes that we can 

encounter along the wall as a function of the process 

parameters. The finite differences method [16] 

applied to the numerical model verifies these two 

possibilities for certain particular parameter sets.  

  2. MATHEMATICAL MODEL 
 

Figure 1(a) presents the semi-infinite vertical 

impermeable wall of constant mass flux (mw) and 

temperature (Tw), a wall that is embedded in a 

Newtonian fluid-saturated Darcy porous medium and 

the coordinate system attached to it. At the right end 

of the boundary layer, y , the temperature is T∞, the 

environment concentration is xsCC C0,x,   , 

 
Fig. 1: (a) The vertical wall and the associated 

coordinate system; (b) the dimensionless domain. 
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while the dimensional concentration stratification 

coefficient is dx/dCs x,C  . All the properties are 

constant except for the fluid density that obeys the 
Boussinesq approximation. The governing equations: 
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are solved using the following boundary conditions: 
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where t is the time, u and v are the horizontal and the 

vertical velocities,   is the density, t / c  is the 

temperature/concentration volumetric expansion 

coefficients,  /D is the thermal/mass diffusivity, h is 

the height of the computational domain 

The definition of the non-dimensional 

variables: 
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lead to the dimensional governing equations: 
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Rayleigh number,     /LTTKgRa 3
0,wt , 

Lewis number,  D/Le  , the buoyancy ratio,  

    0,wt0,wc TT/CCN   , the thermal and 

the concentration dimensionless stratification 

parameters:   0,wTT TT/LsS  , 

  D/Lm/LsS wCC   are defined. 

The dimensionless boundary conditions become: 
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The conservation equations are analyzed using 

the scale analysis method in Section 3, while the 
finite difference method applied to the mathematical 

model verifies this analysis in Section 4. 

 

 3. SCALE ANALYSIS 
 

The scale analysis [15] considers the transient state 

(section 3.1) as well as the equilibrium state for both 
the heat driven convection (HDC) regime (section 

3.2) and the mass driven convection (MDC) regime 

(section 3.3). 

 

3.1. Scale analysis of the transient state 

In the transient state, the scale analysis of (9) requires 

the equilibrium of the terms representing the inertia 

and the diffusion of heat in the horizontal direction: 
22 Y/~/  . The temperature difference 

registered by the thermal boundary layer is  

 0w TT~T   or 1~ , while T~Y   and, 

consequently, the temperature boundary layer 

thickness in the transient state is: 
2/1

T ~   (12) 

Similarly, considering the equilibrium between 

the inertia and the horizontal diffusion of the species, 

in Eq. (10), we obtain: 22 Y/Le/1~/  . 

As C~Y  , the thickness of the concentration 

boundary layer, C , is: 

2/12/1
C Le/~   (13) 

The concentration difference across the 
concentration boundary layer is: 

2/12/1
0xC0x Le/C~C~C   or 

2/12/1 Le/~  . 

Further, assuming that the boundary layer 

approximation is valid, XT   and XC   (the 

validity of this assumption is established after 

Eq.(36)), we neglect the X/U   term in (8): 

)
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 and we integrate this 

equation from 0Y   to infinity: 

    NRaRa~V  (14) 

The first term on the right hand side of (14) is 

VT, the vertical velocity due to the volumetric thermal 
expansion 

  Ra~Ra~VT   (15) 

while the second term on the right hand side of (14) is 

VC, the vertical velocity due to the volumetric 

concentration expansion: 

  2/12/1
C Le/NRa~NRa~V   (16) 
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Therefore, the vertical velocity scale becomes: 
2/12/1 Le/NRaRa~V   (17) 

An analysis of (17) shows that the velocity 
component due to the evolution of the concentration 

field (VC) increases in time, while the velocity 

component due to the evolution of the temperature 

field (VT) is constant. Consequently, a heat driven 

convection regime dominates initially at each 

abscissa, but, if the equilibrium time, ech , is bigger 

than the transition time, trz :  

2
trzech N/Le  (18) 

A mass driven convection (MDC) regime will 

attain the equilibrium state at that abscissa. In the 

MDC regime, as 1~  and V is given by (14), the 

concentration difference across the boundary layer 

is N/1 . 

 

3.2. Scale analysis of the heat driven convection 

(HDC) regime  

In the heat driven convection regime, the equilibrium 

is reached when the heat flux diffused in the Y 
direction equals the heat flux convected in the X 

direction: 2
T/~X/V  . Replacing (12) and 

(15), the temperature field attains the equilibrium 

state at the moment: 

  Ra/X~
TT,ech  (19) 

At this moment, according to (12), the 

boundary layer thickness is: 

    2/1

TT,ech Ra/X~  (20) 

The equilibrium time,  
TT,ech , is bigger 

than the transition time, trz , if:  

XN/LeRaX 2
trz   (21) 

Scale analysis of the concentration field in the HDC 

regime 
The analysis of the concentration field in the 

HDC regime starts with the analysis of the vertical 

velocity terms: CVS  and X/V  , in the species 

conservation equation, Eq. (10). The CVS  term is 

dominant if X/Le/S 2/12/1
C   or  

LeXS 22
Cs   (22) 

Equation (22) states that, at the beginning, 

when s , the CVS  term is dominant but, in time, 

this situation remains unchanged or not depending on 

the relative magnitude of s , trz ,  
TT,ech  and the 

equilibrium time of the concentration field. This later 

variable is established as follows: 

a) If the X/V   term is greater than the CVS  

term in Eq. (10), then the scale analysis reveals that: 

  Le/Y/~X/V 22   (23) 

and, after replacing Eq. (13) and Eq. (15) in Eq. (23), 

we find the order of magnitude of the equilibrium 

time of the concentration field: 

  Ra/X~
TC,ech  (24) 

As we can notice, for this situation, the 
temperature and the concentration fields attain the 

equilibrium state in the same moment as  
TT,ech , 

Eq.(19), and  
TC,ech , Eq.(24), have the same form. 

The concentration boundary layer thickness is 

     2/1

TC,ech LeRa/X~   (25) 

b) If the CSV   term is the dominant vertical 

convection term in Eq.(10), then the scale analysis 

reveals that: 

  Le/Y/~SV 22
C   (26) 

Using Eqs. (13) and (15), we conclude that the 

equilibrium time is     Le/S/Ra/1~
2

CTSc,ech  

and that the magnitude of the equilibrium 

concentration boundary layer thickness is: 

   LeSRa/1~ CCSt,ech   (27) 

Further, the equilibrium time  
TSc,,ech  will 

be compared to  trz  and s : 

b1) the equilibrium time  
TSc,,ech  is smaller than 

the transition time, trz , if: 

1N/LeSRa C   (28) 

b2)  the possibility to have   sTSc,ech   is 

restricted to the domain defined bellow: 

  s
2
C XLeSRa/1X   (29) 

 
Fig. 2: The heat and mass driven natural convection 

regimes sequence. a) 1N/SLeRa C  ; b) 

1N/SLeRa C  . 

Two distinct situations appear: 

1. If Eq. (28) is valid, then the heat→mass driven 

convection transformation is not taking place because 

trzs XX   and at the Xtrz abscissa, the velocity is 

already settled to a constant value: 

  LeRaS/N1Ra~V C , where Ra~VT  is the 

greater term. The regimes succession is presented by 

Fig. 2a: HDCC  HDCSc. 
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2. If Eq. (28) is not valid, trzs XX   and the regimes 

succession: HDCC  MDCC  MDCSc is 
encountered (Figure 2b). In order to establish the 

abscissa where the MDCC MDCSc  transition is 
taking place, the scale analysis of the MDC regime is 

presented in the next section. 

 

3.3. Scale analysis of the mass driven convection 

(MDC) regime 

MDCSc regime ( the CSV   term is dominant) and 

MDCC regime (the X/V   term is dominant) will 

be treated separately. 

3.3.1. MDCSc regime 
The equilibrium state in the MDCSc regime is 

reached at the moment when the diffusion of mass 

away from the wall, in the Y direction, equals the 

convection of mass expressed by the CSV   term: 

  Le/Y/~SV 22
C   (30) 

Using Eq. (13) and Eq. (16) in Eq. (30), we 

obtain the equilibrium time and boundary layer 

thickness: 

   CcSc,ech RaNS/1~  (31) 

   LeRaNS/1~ CcSc,ech  (32) 

This state of equilibrium is attained before the 

transition MDCScMDCC if   sCSc,ech   or 

LeRaNS/1X 3
C  

(33) 

This is the condition that separates MDCC and 

MDCSc regimes in Fig. 2(b).  

 

3.3.2. MDCC regime 

If the X/V   term is dominant, the 

equilibrium state is characterized by: 
2
C/Le/1~X/V  . The equilibrium time 

and concentration boundary layer thickness are: 
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(34) 
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Scale analysis of the temperature field in the MDC 

regime. The scale analysis of Eq. (9) reveals that 
22 Y/~X/V  . Using Eq. (12) and Eq. (16), 

the time when the temperature field attains the 

equilibrium is     3/22/1
CT,ech N/Ra/XLe~ . The 

temperature boundary layer thickness is: 
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(36) 

The validity of this scale analysis imposes: 

- if 1N/LeSRa C  :   X
TT,ech   and  

  X
TC,ech   for   s

2
C XLeRaS/1X  . These 

set of conditions requires: 1SC   and Ra/1X   

(this condition defines a diffusion region for low 

values of X  [17])); 

- if 1N/LeSRa C  :   X
TT,ech   and 

  X
TC,ech   for 2N/RaLeX   and 

  X
CC,ech   and   X

CT,ech   for 

LeRaNS/1X 3
C . These set of conditions 

requires: Ra/1X   and 1LeS 2/1
C  . 

 

4. NUMERICAL MODELING  
 

Using the stream function definition of the velocity 

field: X/U   and Y/V  , the 

dimensionless governing equations become: 
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while the dimensionless boundary conditions are: 

0 , 1Y/  , 1  at 0Y   (40a) 

0
Y
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, 0  as LY   

(40b) 

0 , 0  at 0X   (40c) 
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The governing equations, (37) − (39), 

subjected to the boundary conditions, (40), were 

solved using the finite difference method, the higher 

order hybrid scheme [16]. The program was tested 

using the results published in the literature [18-20]. 
 

5. RESULTS AND DISCUSSIONS 
 

The HDCCHDCSc  regime succession of Fig. 2a is 
exemplified for the following parameter set: 

200Ra  , 0.5N  , 1Le   and 05.0SC  . In this 

case, 2N/LeSRa C   and   2LeSRa/1 2
C  . 

Figure 3 presents the dimensionless temperature (Fig. 

3(a)), concentration (Fig. 3(b)), stream function (Fig. 

3(c)) and   CS/X/   (Fig. 3(d)) fields. The 

0.104.0   computational domain was discretised 

using 100141  points. A relative error of each 

variable in each point of 10-6 was used to stop the 

iterative process developed with a time step of 
4100.3  .  The concentration field in Fig. 3(b) does 

not exceed the 2.0N/1   value across the boundary 

layer which indicates that there is no HDCMDC  

transition. Figure 3(d) reveals that the HDCCHDCSc 
transition takes place at the 0.6 abscissa.  
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Fig. 3: (a) , (b) , (c)  and (d)   CS/X/   

fields. 200Ra  , 0.5N  , 1Le   and 05.0SC  . 

Figure 4 presents the variations of 

dimensionless (Fig. 4(a)-(c)) as well as scaled 

dimensionless (Fig. 4(d)-(f)) temperature, 
concentration and vertical velocity, respectively, at 

three abscissas in the HDCC region: 0.2, 0.4 and 0.6. 

The comparison of the un-scaled and the scaled plots 

shows clearly the validity of the scale analysis. 

Figure 5 presents the variations of the 

dimensionless temperature, concentration and vertical 

velocity (Fig. 5(a)-(c)) at three abscissas in the HDCSc 

region: 4.0, 6.0 and 8.0 as well as scaled  temperature, 

concentration and vertical velocity variations (Fig. 

5(a)-(c)) for the same three abscissas revealing, again, 

the validity of the scale analysis. 

The HDCCMDCCMDCSc succession 
presented by Fig. 2(b) is exemplified using the 

parameter set: 100Ra  , 0.10N  , 1Le   and 

02.0SC  . The computational domain has a 

0.206.0   size, the discretisation grid uses 200161  

points, the relative error of each variable in each point 

at the end of the iterative process is lower than 10-6, 

while the time step is 4100.3  . Figure 6 presents  

(Fig. 6(a)),  N/1/  (Fig. 6(b)),  (Fig. 6(c)) and  

  CS/X/   (Fig. 6(d)) fields for this particular 

parameter set. We notice that the HDCCMDCC 
regime transition takes place at an abscissa of 0.6, 

while the MDCC MDCSc transition is taking place 
at the 2.4 abscissa.  

Further, each of the three regions (HDCC, 

MDCC and MDCSc ) was analyzed using three cuts: 

- Fig. 7: 0.2, 0.4, 0.6 abscissasthe HDCC region; 

-Fig. 8: 1.2, 1.6 and 2.0 abscissasthe MDCC region; 

-Fig. 9: 13.0, 15.0 and 17.0 abscissasMDCSc 
region.  

Dimensionless and scaled dimensionless 
temperature, concentration and vertical velocity plots 

were drawn for each abscissa proving the validity of 

the scale analysis results. 

The figures (3)−(9) verify the two regimes 

succession found by the scale analysis of the 

conservation equations of the system. 

 

 
Fig. 4: (a) , (b) φ and (c) V variations as a function of Y and the scaled (d) , (e) φ and (f) V variations as a 

function of scaled ordinate, for the abscissas: 0.2, 0.4 and 0.6; 200Ra  , 0.5N  , 1Le  , 05.0SC  . 
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Fig. 5: (a) , (b) φ and (c) V variations as a function of Y and the scaled (d) , (e) φ and (f) V variations as a 

function of scaled ordinate, for three abscissas: 4.0, 6.0 and 8.0; 200Ra  , 0.5N  , 1Le   and 05.0SC  . 

 
Fig. 6: (a) , (b)  N/1/ , (c)  and (d) 

  CS/X/   fields. 100Ra  , 0.10N  , 1Le   

and 02.0SC  . 

 

 

 

 

6. CONCLUSIONS 
 

This paper presents the analysis of the natural 
convection triggered by a constant mass flux and 

temperature vertical impermeable wall situated in a 

fluid saturated Darcy mass stratified porous medium. 

The scale analysis of the system reveals two 

possible maps of the heat and mass driven natural 

convection processes that attain the equilibrium state 

along the wall: if 1N/SLeRa C  , then a 

HDCCHDCSc sequence is encounter along the wall; 

otherwise a HDCCMDCCMDCSc is registered. 
The finite difference method is used to verify 

these two maps for two particular parameter sets. 

These results bring a new understanding of the 

natural convection that takes place in the boundary 

layer of a vertical wall of constant mass flux and 

temperature, a wall that is embedded in a Darcy mass 

stratified porous medium.     
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Fig. 7: (a) , (b) φ and (c) V variations as a function of Y and the scaled (d) , (e) φ and (f) V variations as a 

function of scaled ordinate, for the abscissas: 0.2, 0.4 and 0.6. 100Ra  , 0.10N  , 1Le   and 02.0SC  . 
 

 
Fig. 8: (a) , (b) φ and (c) V variations as a function of Y and the scaled (d) , (e) φ and (f) V variations as a 

function of scaled ordinate, for three abscissas: 1.2, 1.6 and 2.0. 100Ra  , 0.10N  , 1Le   and 02.0SC  . 

 
Fig. 9: (a) , (b) φ and (c) V variations as a function of Y and the scaled (d) , (e) φ and (f) V variations as a 

function of scaled ordinate, for three abscissas: 13.0, 15.0 and 17.0. 100Ra  , 0.10N  , 1Le  ,  02.0SC  . 
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