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ABSTRACT 
 

The paper presents an analysis based on a complementary theorem concerning 

the enwrapped profiles – the Generating trajectories method, regarding the profile 

of the cylindrical worm conjugated to a star-wheel having teeth with trapezoidal 

profile. This type of gear can be met at the so called “single screw compressors” or 

in transmissions with kinematical purpose, working at low torques. An algorithm 

dedicated to find the worm profile has been developed. The specific problems of 

both primary interference and assemblage interference have been addressed. A 

numerical application for sampling the analytical results application in practice is 

also included. 

 

Keywords: star wheel – conjugated worm gear, trapezoidal tooth profile, generating 
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1. INTRODUCTION 
 

The single screw compressor developed as an 

alternative solution to twin screw compressor, being 

capable of high energy efficiency by diminishing 

losses due to leakage, frictional effects and heat 

transfer factors [1]. 

The main components of single screw 

compressor are the central screw (a cylindrical worm 

with one or more threads) and two gate rotors (star 

wheels), located on both sides of the central screw 

and having at least one tooth in meshing engagement 

with its threads (Fig. 1). 

 

 

Fig. 1. Single screw compressor [2] 

Different profiles of the star-wheel tooth have 

been proposed [3], while the worm profile is 

conjugated to the tooth one and can be determined by 

applying the fundamental theorems concerning the 

reciprocally-enwrapped surfaces [4, 5]. 

In this paper, we suggest approaching the 

worm profiling and the specific interference problems 

(between worm and star wheel tooth profiles) on the 

base of a complementary theorem – the generating 

trajectories method [6, 7]. A profiling algorithm has 

been developed in the case of the star-wheel with 

trapezoidal tooth profile. The algorithm has been 

subsequently implemented in MatLab, the axial 

profile of the conjugated worm resulting by the 

coordinates of a set of points. By starting from here, 

the potential interference problems (primary or 

assemblage interference) can also be studied. 

The next section presents the geometry of the 

star-wheel with trapezoidal tooth profile. In the third 

section, the worm axial profile is found, in analytical 

form, while the fourth deals with worm numerical 

model. The fifth section addresses to the interference 

problem, the sixth is dedicated to a numerical 

application, while the last one is for conclusion. 

 

2. THE STAR WHEEL WITH 

TRAPEZOIDAL TOOTH PROFILE 
 

Fig. 2 shows the plain profile of the star wheel and the 

reference systems associated to the rolling centroids 

of the star-wheel (circle of Rr radius) and of the 

conjugated worm axial section (straight line, tangent 

to the circle). 
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Fig. 2. Star-wheel profile: the rolling centroids & the 

reference systems 

 

We introduce the following denominations: 

 C1, meaning the centroids of Rr radius, attached 

to the star wheel 

 C2 – the rectilinear centroids attached to worm 

axial section – the conjugated rack-gear 

 xyz – global system, attached to star-wheel 

rotation axis 

 XYZ – relative system, mobile, moving together 

with C1 (hence with the star wheel too) 

 ξηζ – relative system, mobile, associated to the 

generator rack-gear 

 X1Y1Z1 – relative system, mobile, attached to the 

worm, which has the axis V (coincident to Y1 

and the helical parameter p. 

Hereby, the condition of centroids rolling is: 

 

1rR     (1) 

 

The tooth flank of star wheel with trapezoidal 

profile can be analytically expressed as: 

 

     
,sinucoshY

;cosusinhX
AB




  (2) 

 

with u variable. The extreme values of u can be 

determined from the relations: 

 

      i
2

min
2 Ruh  , e

2
max

2 Ruh  . (3) 

 

In relation (3), Ri, Re and h are constructive 

parameters, characterizing the geometry of the star 

wheel tooth. 

3. PROFILE OF WORM AXIAL 

SECTION 
 

The kinematics for generating worm axial section 

results by composing two motions: 

 rotation of C1 centroid, 
 

      Xx 1
T
3     (4) 

 

 translation of C2 centroid, 
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As a consequence, the relative motion between 

the mobile systems is: 
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Due to motion (6), the family of AB  flanks 

results, into rack-gear reference system, as: 
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Profiles family envelop (7) is the profile of the 

generator rack-gear (the conjugated worm’s axial 

section). The enveloping condition will be further 

determined, according to generating trajectories 

method. In this purpose, the directional cosines of the 

normal to AB profile (Fig. 2) are firstly calculated: 
 

jcosisin

100

0sincos

kji

nAB  . (8) 

 

Hereby, the normal in the current point of the 

tooth flank has the expression: 
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k meaning a variable scalar. 

Then, ABN  trajectories in its relative motion 

respect to the rack-gear system result from (6): 
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By imposing to normal family the condition of 

passing by the gearing pole P (the point of tangency 

between the two centroids, see Fig. 2), 

 

    
,R

;0
P

1r 


          (11) 

 

from (10) we obtain, by eliminating k between the 

two relations, the enveloping condition: 

 

   1r cosRu  .         (12) 

 

The condition (12) associated to the equations 

of the family (7) determines the axial profile of the 

conjugated worm (the generator rack-gear of the star 

wheel), looking in principle like: 

 

     
 
 .

;
S

1

1
A




         (13) 

 

Concretely, the rack-gear profile SA (the worm 

axial section) will result as a matrix, formed by the 

coordinates of a given number of points: 
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4. WORM NUMERICAL MODEL 
 

 
Fig. 3. The position of the reference systems 

associated to the worm and to the wheel 

 

The worm playing the role of central screw can 

be modelled in numerical form by giving to its axial 

section (14) a helical motion of V axis and p helical 

parameter, identical to the axis and helical parameter 

of the worm, Fig. 3.  

In addition to the reference systems already 

mentioned in section 2, we also consider x0y0z0, 

meaning a global system attached to worm axis. Its 

position relative to ξηζ system results from 
 

Axx0  , 

 

0

0

rR

A
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and from (5). Hereby, we have: 
 

    Aax0  .         (16) 

 

If the last transform is applied to the set of 

points giving worm’s axial section (14), then it 

follows that: 
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The rotation of φ2 angle around worm’s axis 

can is expressed through the equation: 
 

    12
T
20 Xx  .         (18) 

 

The inverse transform, applied to the set of 

points giving worm’s axial section (17) leads to: 
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X  , n2,1j  .        (19) 

 

If we accept that the worm is cylindrical and of 

p parameter, then λ (the parameter measuring rack-

gear’s translation) must obey to condition: 
 

   2p  .          (20)   

 

Finally, from (19) and (20), after development, 

the worm equations result, in discrete form, as: 
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These represent, for φ2 – discrete, a “solid” 

formed of points coordinates giving the numerical 

model of the worm. 

Note An analytical form of the worm axial section 

can also be expressed, from (7) and (12): 
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              (22) 

In this case, the equations of worm peripheral 

surface result as follows: 
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5. THE GEAR INTERFERENCE AT 

ASSEMBLAGE 
 

In reality, the star-wheel has a significant thickness, 

so its flank is a 3D cylindrical surface. As a 

consequence, the equations (2) should be replaced by: 

 

 

.tZ
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AB
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         (24) 

 

In the relation from above, t means a parameter 

varying along star-wheel axis. 

In assemblage position, the surfaces (23) and 

(24) might interfere, this being called “interference at 

assemblage” of the gear. High values of t parameter 

put the gear in the impossibility of functioning.  

Through the coordinates transformation ?: 
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the surface of wheel tooth’s flank is transposed in the 

reference system of the worm, enabling to have both 

surfaces expressed in the same system, so they can be 

intersected. The interference points position can be 

found by solving the system: 
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6. NUMERICAL APPLICATION 

 
A numerical application has been developed in 

MatLab in order to implement the above-presented 

analytical solution for studying the star wheel – 

conjugated worm gear. 

The input values of the parameters defining the 

gear geometry (Fig. 2) were the following: 

 

 Wheel tooth foot radius: Ri = 40 mm;  

 Wheel tooth head radius: Re = 45 mm;  

 Wheel rolling radius: Rr = 42.5 mm;  

 Tooth flank angle: ε = 20º;  

 Half-angle at centre corresponding to wheel 

tooth head: β = 10º;  

 Worm rolling radius: ri = 30 mm;  

 Worm helical parameter: p = 9/π mm. 

The constructive parameter h can be calculated 

(see also Fig. 2) with: 
 

      sinRh e          (24) 
 

In the addressed numerical application, 

according to the above-mentioned values of the gear 

parameters,  

h = 22.5 mm. 

First of all, the application determines, by 

points, the rack-gear profile SA (the worm axial 

section), in the form (14). Because of symmetry, only 

the left flank case has been considered. 

In Table 1, there are presented the points’ 

coordinates (computed after considering a 20 points 

mesh of [umin, umax] interval).  

In Fig. 4, the rack-gear profile, obtained by 

joining 100 points along it, their coordinates being 

calculated by the application, is represented next to 

wheel tooth flank profile. 

Then, by giving to φ2 angle, from (23), a 

discrete variation inside the interval comprised 

between –π and π (in 
2

n = 200 points), with ξ and η 

calculated according to (22), the application finds the 

surface S of worm’s peripheral surface for a turn of 

the screw. This surface is presented, in graphical 

form, in Fig. 5. 

       Table 1. Worm axial section 

Crt. 

no. 

ξ 

[mm] 

η 

[mm] 

1 1.8910 10.4972 

2 1.6163 10.2873 

3 1.3426 10.0834 

4 1.0702 9.8859 

5 0.7996 9.6948 

6 0.5310 9.5103 

7 0.2648 9.3326 

8 0.0015 9.1619 

9 -0.2584 8.9984 

10 -0.5145 8.8424 

11 -0.7660 8.6941 

12 -1.0123 8.5538 

13 -1.2526 8.4216 

14 -1.4859 8.2981 

15 -1.7111 8.1834 

16 -1.9270 8.0779 

17 -2.1320 7.9821 

18 -2.3242 7.8964 

19 -2.5014 7.8213 

20 -2.6608 7.7574 



FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 

15 

 
Fig. 4. Profile of worm axial section  

 
Fig. 5. Worm peripheral surface S (left flank) 

 

By numerically solving the system (26), the 

interference points’ coordinates have been found. To 

this purpose, a discrete variation for t parameter was 

firstly considered, followed by the determination of 

the coordinates of the interference point from the 

plane  

Z1 = tk, k = 1 ... nt. Here, a limit value was not 

imposed for t, although in real cases this exists, being 

determined by the star wheel width, b, namely: 

 

          2/btmax  .         (25) 

 

In Table 2, there are presented the coordinates 

of the interference points occurring in the addressed 

numerical application, while in Fig. 6 it is represented 

the curve resulted after joining these points. 

 

       Table 2. Coordinates of interference points 

Crt. 

no. 

X1 

[mm] 

Y1 

[mm] 

Z1 

[mm] 

1 27.2809 8.4839 0 

2 27.3021 8.4915 -0.0136 

3 27.3236 8.4992 -0.0273 

4 27.3422 8.5059 -0.0410 

5 27.3642 8.5140 -0.0547 

6 27.3865 8.5223 -0.0685 

7 27.4026 8.5280 -0.0822 

8 27.4188 8.5338 -0.0960 

9 27.4352 8.5397 -0.1098 

10 27.4517 8.5456 -0.1236 

................................................... 

947 25.5529 7.8538 -13.0918 

948 25.5424 7.8498 -13.1026 

949 25.5319 7.8458 -13.1133 

950 25.5253 7.8444 -13.1261 

951 25.5148 7.8404 -13.1368 

952 25.5042 7.8364 -13.1476 

953 25.4937 7.8324 -13.1583 

954 25.4832 7.8284 -13.1690 

955 25.4766 7.8270 -13.1818 

956 25.4660 7.8230 -13.1925 

 

 
Fig. 6. The interference curve 

Wheel tooth 

flank 

Worm axial 

section 
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Fig. 7. Length of wheel tooth flank affected by 

interference 

 

The length of wheel tooth flank affected by the 

interference at assembly phenomenon can be noticed 

if projecting the points of intersection between the 

two surfaces (wheel tooth flank and worm helix) on 

XY plane, next to the segment representing the tooth 

flank profile. In Fig. 7, the interference points’ locus 

is represented with continuous, thicker line, while the 

rest of the tooth flank is in dashed line. 

As it can be easily observed, a significant part 

of tooth flank is concerned by the interference at 

assembly.  

The solution for avoiding severe malfunctions 

in gear functioning is to adopt as smaller as possible 

values for wheel width b and/or to use modified 

profiles for tooth flank. 

 

 

 

 

7. CONCLUSION 
  

In this paper, an analysis of the gear formed by a star 

wheel with tooth trapezoidal profile and its 

conjugated helical worm is presented. Gear geometry 

has been studied on the base of a complementary 

theorem concerning the enwrapped profiles – the 

Generating trajectories method. After defining the 

wheel tooth flank profile by appropriate parameters, 

the profile of the worm axial section has been 

analytically determined. A solution for building the 

worm numerical model has been consequently 

developed, in order to enable the finding of the points 

where wheel tooth and worm surfaces do intersect. 

The numerical simulation proved the correctness of 

the deducted equations and the utility of the solution 

for studying the interference at assemblage. 

  

REFERENCES 
 
[1] Single screw compressors, available at 
http://www.emersonclimate.com 

[2] Compressor Airend & Rebuilts, available at  

http://www.nirvatech.com/products.php?pageID=9&catID=29&pro
ductID=27 

[3] G. Frumuşanu, V. Teodor, S. Totolici, N. Oancea, The 

interference at the assemblage of cylindrical worm – star wheel 
gear, Proceedings in Manufacturing Systems, 2016, in press. 

[4] F.L. Litvin, Theory of gearing, NASA, Scientific and Technical 

information Division, Washington DC, 1984. 
[5] S.P. Radzevich, Kinematics Geometry of Surface Machining, 

CRC Press, London, 2008. 

[6] N. Oancea, Surfaces generation through winding, vol. I – III, 
Galati University Press, Galaţi, 2004. 

[7] N. Baroiu, V. Teodor, N. Oancea, A new form of in plane 

trajectories theorem. Generation with rotary cutters, Bulletin of the 
Polytechnic Inst. of Iaşi, Tome LXI (LV), Fasc. 3, 2015, pp. 29–36. 

 

 

http://www.emersonclimate.com/
http://www.nirvatech.com/products.php?pageID=9&catID=29&productID=27
http://www.nirvatech.com/products.php?pageID=9&catID=29&productID=27

