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ABSTRACT 
 

In this paper dynamic stability of spur gear transmissions induced by mesh 

stiffness variation is numerically investigated. The obtained results were compared 

with experimental results presented in the references [5],[6] and [7]. It was found a 

good agreement with the experimental resonances in the sub critical, critical and 

super critical range. The equation of motion was obtained by reducing the gears 

system at the line of action and is presented as a Mathieu’s equation. The 

parameter of this equation was considered the fluctuation of mesh stiffness modeled 

as a harmonic function. The dynamic stability of the system was determined for 

various values of the ratio: mesh frequency/natural frequency of the system. 
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1. INTRODUCTION 

Gears transmission plays an important role in modern 

technology. It transfers power andmotion, and it is 

used in various types of machines systems. The basic 

concern in the old studies of gears transmission  was 

the prediction of tooth dynamic loads for designing 

gears at higher speeds [8]. In later studies of gear 

dvnamics the target is calculation of  dynamic 

transmission errors to predict gear noise. The 

predicting the gear noise and dynamic loads acting on 

the gear tooth is the most important concern in real 

gear design [8]. 

The main source of vibrations in a geared 

transmission system is usually the meshing action of 

the gears. The vibration models of the gear-pair in 

mesh have been developed, taking into account the 

most important dynamic factors such as effects of 

friction forces at the meshing interface, gear backlash, 

the time-varying mesh stiffness and the excitation 

from gear transmission errors [4].  

 

2. PROBLEM FORMULATION 
 

In the present study only spur gears transmission was 

considered. The mesh action of the gears is 

schematically represented in the Figure 1. 

Periodic variation of the single pair mesh 

stiffness k(t) [1],[8] and its shape during  a period (see 

the Figure 2 for the steel gears) makes rational to be 

used a harmonic function to approximate mesh 

stiffness time-variation as it is proposed by the 

relation (1):  

 

   0 cosmk t k k t   , (1) 

 

where km is   the average of mesh stiffness, k0  is  the 

amplitude of fluctuations and   is the  mesh 

frequency (gear mesh frequency=number of 

teeth*shaft speed). The variation of the mesh stiffness 

of spur gears teeth was calculated in [1] by taking into 

account the bending deflection of teeth in respect with 

rigid gear and the contact deformations using FEM. 

The ratio k0/km  for a pair of teeth in contact of  steel 

gears was equal with 0.169 [1] (see the Figure 2). The 

relation (1) means parametrical excitation of gear 

mesh vibrations. 

 

Fig. 1. Figure 1 Meshing action of the gears; 

radius of base circles ra (rb),  rotary inertia moments 

about rotation axis Ja (Jb) 
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Fig.2. Variation of mesh stiffness [1] 

 

Fig. 3. Mechanical model of parametrical vibrations 

induced by mesh stiffness variation [1] 

  

Mechanical model used to analyze parametric 

vibrations induced by the variation of mesh stiffness k 

is given in the Figure 3. In the Figure 3 Ma   and Mb 

are reduced mass in respect with the line of action 

 (
2 2

;a b

a b

a b

J J
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r r
  ).  

 The differential equations of motion 

(without damping) of the two mass are [1]: 

 
  
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On purpose to eliminate the rigid displacement 

of the two mass system a new variable u=ub-

ua(relative displacement) is introduced and the two 

equations are reduced in the form (3):     
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k k
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where p is the natural frequency of the system having  

k=km=constant. 

If notes 
𝑘0

𝑘𝑚
= 𝐸𝑝𝑠 the equation (3) becomes: 

 2 1 cos 0u p Eps t u     (5) 

Equation (5) is a Mathieu’s equation [2,3].  

If we came across equation (5) in numerical 

work, we could use the Matlab ODE integrator to 

investigate the solutions u(t) for various different 

values of  parameters p,  and Eps. What would  we 

find is  that for some combinations of parameter 

values the solutions are “well-behaved oscillations 

with bounded amplitudes”[3], for some combination 

of parameter values  the solutions are uneven 

oscillations while for other combinations of parameter 

values the amplitudes of the solutions grow 

exponentially in time; in this way we have stable 

oscillations, uneven oscillations and  unstable  

oscillations. 

The equation (5) was numerical integrated 

using Matlab ODE45 function over 20 periods of the 

slower oscillation (Matlab ODE45 function solve the 

differential equations using 4th-order Runge-Kutta 

method). The equation was subjected to random 

initial conditions [3].  I call the solution unstable if the 

amplitude exceeds 10x its initial value. 

The representation of scattered points of 

solution is given in the Figure 4 with related 

notations. 

The example of a stable solution (marked by 

‘*’ in Figure 4 ) is given in the Figure 5, an example 

of a stable solution (marked by ‘’ in Figure 4 ) is 

given in the Figure 6 and  an example of an uneven 

oscillations (marked by ‘o’ in Figure 4 ) is given in 

the Figure 7. 

For steel gears the ratio Eps=ko/km is near the 

value 0.2. In the vicinity  of parameter Eps=0.2  

(Figure 4) there are some values of /p ratio for 

which we could have resonances: /p=0.5 (in 

subcritical range) and /p=1 (in  the critical range) 

and /p=1.5  in the super critical range.  

For /p=2 we will always have resonance 

produced by dynamic instability of the system (super 

critical range). 

 

  

 

 



FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 

19 

 
 

Fig. 4. The representation of scattered points of solution - /p (mesh frequency/natural frequency) versus 

Eps=ko/km. 

 

Points with stable solution oscillations with bounded amplitudes denoted by‘*’, with uneven oscillations 

denoted by ‘o’ and with unstable solution (the amplitude exceeds 10x its random initial value) denoted by  ‘’. 

 

 
 

Fig. 5. Example of stable solution 
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Fig. 6. Example of unstable solution 

 

 
 

Fig. 7. Example of uneven oscillation 
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In the Figure 8 from reference [5] are shown 

the resonances of dynamic factor (gear dynamic 

forces and vibration) in the subcritical, critical and 

supercritical range. The super critical resonance is 

highlighted only in the experimental results and not in 

the calculated values of dynamic factor. The authors 

of [5] said that a possible explanation of super critical 

resonance can be found in their model instability. In 

the present work, in the Figure 4 it is shown that the 

dynamic instability of system for mesh 

frequency=2*natural frequency induces that super 

critical resonance in any conditions. 

In the reference [7] for two stage gear system 

the authors concluded that “the unstable regions of the 

time-varying stiffness gear system appear at the 

position of twice its natural frequency”. 

In the reference [6] was observed that the 

vibration spectrum calculated by numerical methods 

and the spectrum of the measured vibration signal 

(Figure 9) show the same sideband structures.  

The Figure 9 shows the resonances in the 

subcritical, critical and super critical range (for 

fz/f0=0.5,  fz/f0=1, fz/f0=1.5 and fz/f0=2  - see values 

and notations in the Figure 9). 

 

 
Fig. 8. Dynamic factor Kv and approximation of gear dynamic forces and vibration (continuous curve represents 

the experimental results)[5]; f=mesh frequency and  f0=natural frequency 

 

 
Fig. 9. Calculated results of frequency spectrum [6]; fz =420Hz is the mesh frequency; f0=869 Hz is the 

natural frequency of the system 

 

3. CONCLUSIONS 
 

The dynamic stability of the system was investigated 

for the values of the parameter Eps=k0/km in the range 

(0, 1] and for various values of the ratio: mesh 

frequency/natural frequency of the system.  

It can be concluded that: 

- the system could be stable in the subcritical 

range for the values of parameter Eps<0.15. 

- for 0.15<Eps0.2the system tends to be 

unstable (the solution is represented by 

uneven oscillations) inthe subcritical 

rangefor mesh frequency=0.5* natural 

frequency of the system, in thecritical 

rangefor mesh frequency=natural frequency 

and also in super critical rangefor mesh 

frequency=1.5*natural frequency; any 
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failure of the gear teeth or gear transmission 

may cause dynamic instability. 

- in the super critical domain with mesh 

frequency=2*natural frequency, the system 

will be unstable for any value of  the variable 

Eps. 

- the uneven oscillation represents the initial 

stage manifestation that can lead to 

instability. 
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