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ABSTRACT 
 

The involute teeth of straight or helical teethed wheels are usually machined 

with hob mill. The hob mills admit as primary peripheral surface a cylindrical 

helical surface with constant pitch. In this paper, based on the complementary 

theorem of “generating trajectories family”, it is demonstrated that the worm 

conjugated with an ordered curl of involute flanks is also an involute worm. 

The proposed development is based on analytical representations of the 

enwrapping surfaces with single point contact. In problem solving was applied the 

method of intermediary surface (generating rack gear), developing the issue as a 

succession of enwrapping surfaces with linear contact. As application, it is 

presented a solution of the same issue in a graphical design environment — CATIA. 

Keywords: graphical method, CATIA, generating trajectories family 

1. INTRODUCTION 

The involute teethed wheels are usually machined by 

enwrapping, using the rolling method, with rack gear 

tools, gear shaped tools of hob mills [1, 2]. 

The constructive profiling of the worm cutter, 

assumes to know the primary form of the generating 

worm as base of active surface which represent the 

teeth of cutting tool — the hob mill. 

The hob mill profiling can be made based on 

the fundamental theorems of surfaces enwrapping, the 

Olivier or Gohman theorem [1]. The second theorem 

of Olivier is particularly used, as theorem for 

enwrapping of surfaces with point contact, with 

intermediary surface’s method. The intermediary 

surface is represented by the flanks of rack gear 

conjugated with a wheel with straight or helical teeth. 

For the involute profile of the surfaces curl, at 

contact with a hob mill, were imagined solutions for 

determining the theoretical form of the worm, by 

Euler himself and, further by Kutzbach (1925). These 

solutions were given by Olivier fundamental 

theorems. 

For the same problem type, solutions were 

proposed by Oancea [4], based on the Gohman 

theorem, using the method of intermediary surface. 

They are methods known for generating 

various worms’ types [2, 3, 5]  such as the 

Archimedes’s worm and involute worm with tools 

which materialize a straight line generatrix or for the 

unfolded worm, with an in-plane surface (grinding 

wheel) modelling a plane tangent to a helical surface. 

Also, Litvin et al. [3] recommend techniques 

and solutions for generation of worms on type K and 

F. 

For profiling the primary peripheral surface of 

the worm conjugated with involute teeth were 

imagined solutions and were created specialized 

algorithms in LISP for AutoCAD [6]. 

Also, were made applications in CATIA 

regarding the generation of helical surfaces [7] using 

the capabilities of this graphical design environment 

[8]. 

In this paper, is proposed an analytical 

approach for determining the worm conjugated with 

an ordered curl of involute cylindrical surfaces 

(involute straight teethed wheel), based on a 

complementary theorem of surface enwrapping — the 

family of generating trajectories [9]. The goal is to 

demonstrate, in an analytical way, that the worm 

conjugated with involute teeth is an involute worm. 

 

2. INVOLUTE FLANK OF TEETHED 

WHEEL 

In figure 1, is presented the frontal profile of the 

involute tooth, associated with a reference system, 

XYZ, where the Z axis is overlapped by the teethed 

wheel’s axis. At the same time, is defined the  

reference system associated with the rack gear’s 
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centrode and the xyz global reference system, initially 

overlapped by XYZ reference system. 

 
Fig. 1. Involute profile, C1 and C2 rolling centrodes;  

I – wheel’s rotation; II - rack gear’s translation 

 

The involute of circle with radius Rb, see figure 

1, is defined by vectorial equation 

 OM OT TM  , (1) 

where: 

    cos sinb bOT R i R j          ; (2) 
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with  variable parameter, and and constant 

geometrical values. 

In this way, the involute equations, the Euler 

equations, are defined as: 
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The two constants,  and  are deduced from 

equations: 
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;

,

b

r

x y R

x y R

 

 
 (5) 

cosb rR R  , ( normalized, current =20) and Rr 

radius of C1centrode. 

The rolling process kinematics for the two 

centrodes includes the movements: 

- the rotation of C1centrode and, joined with 

this, the XYZ reference system around the z axis of the 

global reference system, 

  3

Tx X   , (6) 

with  rotation angular parameter; 

- the translation of the C2centrode, along the  

axis: 

 ;  
r

r

R
x a a
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    
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. (7) 

In this way, the relative motion of the XYZ 

reference system regarding the  system, from (6)

and (7), results in form: 
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From (8) results: 
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 (9) 

The involutes family, in the  reference 

system, can be restrained in form: 
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(10) 

The enwrapping of involutes family (10) 

represents the profile of rack gear in  plane. 

 

3. RACK GEAR RECIPROCALLY 

ENWRAPPING WITH INVOLUTES’ 

FAMILY 

It is proposed the determination of enwrapping 

condition by the method of “generating trajectories 

family” [9]. 

For this, are defined the directrix parameters of 

the normal to the involute (the TM versor, see figure 

1) denoted with En : 

    sin cosEn i j        . (11) 

The direction of normal to the involute (4) may 

be written as: 
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 (12) 

 

with N  variable scalar value. 
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It is possible to define the trajectories family 

for the normal (12) in the generating movement (8), 

by transforming: 
 

    3: T
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or, developed: 
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In the centrodes’ rolling process, the family of 

normals to the involute profile (14) must pass through 

the gearing pole: 
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From the requirement that the equations (14) 

accomplish the conditions (15), it is obtained an 

equations system, where is eliminated the  

parameter: 
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From the equality of the two conditions 

for
N results the specifically enwrapping condition: 

   . (17) 

In this way, joining the equations which 

represent the involute family (10) with the 

enwrapping condition (17) results the parametrical 

equations of the rack gear’s profile S: 
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For the involute profile of circle with Rb radius 

the relations  are known: 

 tan cosb rand R R       , (19) 

so, the equations (18) can be brought to form: 

 S
x = -R

b
×j ×sina ×cosa;

h = R
b
×j ×sina ×sina,

 (20) 

which, with notation: 

 sinbu R     , (21) 

may be described by the following equations: 
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u
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u
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 (22) 

representing the profile of the generating rack gear in 

the plane . 

If we accept that the involute flank is a 

cylindrical surface, with frontal profile (4) and with a 

generatrix parallel with the Z axis, as is the case of 

straight teeth wheel, having the generatrix equation 

 Z t , (t — variable), (23) 

then, the generating rack gear’s equations are: 

 

cos ;

sin ;

,

u

S u

t

 

 



  

 



 (24) 

with u and t variables parameters, see figure 2. 

The equations (24) represent, in principle, a 

cylindrical surface with generatrix parallels with the 

axis . The “cylindrical” surface is reduced, in this 

case, to a plane parallel with the axis . 

 
Fig. 2. The rack gear’s flank — the S plane, 

reciprocally enveloping with the involute flanks; 

reference systems; generating kinematics 

 

4. ANALITICAL PROFILING OF 

HOB MILL 

The hob mill, reciprocally enwrapping with flanks or 

the involute teethed wheel, accepts as primary 

peripheral surface a cylindrical helical surface with 

constant pitch, which admits a contact point 
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(characteristic point) with the involute cylindrical 

flank in the frontal plane of the teethed wheel, 

constituting a pair or enveloping surfaces. 

In the following is proposed the determination 

of conjugated worm (the primary peripheral surface of 

hob mill) using the complementary method of the 

“generating relative trajectories”. 

The method is applied in analytical form, using 

the principle of intermediary surface (generating rack 

gear) in linear contact with the involute cylindrical 

flank of the teethed wheel — the characteristic curve 

between the wheel and the rack. Also, the helical 

surface of the hob mill is profiled as surface 

reciprocally enveloping with the generating rack 

gear’s flank. 

The two characteristic curves are simultaneous 

onto the rack gear’s surface. The instantaneous 

intersection point of these curves represents the 

characteristic point — the point where the hob mill 

generates the involute flank of the teethed wheel. 

In figure 3, are presented the reference system 

associated with the blank, the generating rack gear 

and the future hob mill. 

They are defined: 

xyz is the global reference system with z axis 

overlapped by the teethed wheel; 

x0y0z0 — auxiliary reference system joined 

with the axis of the future hob mill (y0 the axis of the 

worm); 

XYZ — relative reference system joined with 

the involute flank of the teethed wheel (initially 

overlapped to the xyz reference system); 

 — relative reference system, joined with 

the centrode associated with the rack gear, with axis 

parallels to xyz; the  axis is overlapped by the 

C2centrode of the rack gear. 

111 — relative reference system joined with 

the A  axis, which results from the decomposition of 

the helical movement (the worm’s helix with axis V  

and p helical parameter); 

X1Y1Z1 — relative reference system joined with 

the worm representing the primary peripheral surface 

of the worm, enwrapping of the involute flank of the 

wheel; 

It is considered that the generating movement 

of the worm  — the primary peripheral surface of the 

future hob mill (V , p) is decomposed in two 

movements: 

- translation along the generatrix of the rack 

gear’s surface, with direction 0t  parallel with the 

blank’s axis — the axis Z; 

- rotation around the A  axis parallel with the 

V  axis of the hob mill and at the distance a0 from this 

(see figure 3): 

 0 tana p   . (25) 

So, the decomposition of the helical movement 

may be symbolically represented: 

      , , , AV p T t v A  . (26) 

with v and 
A - movement parameters. 

The flank of the generating worm results as 

enwrapping of the generating rack gear’s surface (23) 

in the helical motion (V , p) or in the movements 

assembly in which it is decomposed — rotation with 

axis A  and translation along the generatrix of 

t versor, see figure 2. 

 

Fig. 3. Reference systems — generating kinematics 
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We have to notice that, in the motion  ,T t v , 

the generating rack gear is self-generated. So, the 

characteristic curve of the surface (24) will not 

depend on this component of movement, but only on 

the rotation around the A  axis. This approach reduces 

the calculation effort, making easy to determine the 

characteristic curve between the rack’s surface and 

the worm which constitutes the primary peripheral 

surface of hob mill. 

The generating process kinematics includes: 

- the translation of the rack gear: 

 ;  

0

rR

x a a 

 
 

    
 
 

; (27) 

- the rotation of worm around the V  axis: 

  0 2 2 1

Tx X   ; (28) 

- the relative position of fixed reference 

systems: 
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- the relative motion between the mobile 

reference systems (the relative motion of the rack gear 

regarding the reference system joined with hob mill): 

    1 2 2 0X a a        , (30) 

where: 
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and 

 2 cosp     , (see (28) and fig. 3), (33) 

 — angle between V  axis and the frontal plane of 

the involute teethed wheel. 

In this way, the matrix form of the surface 

generated by the rack gear flank is deduced regarding 

the hob mill’s reference system: 
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 (34) 

After developments, results the parametrical 

equations of the rack gear’s movement regarding the 

V axis (helical movement with p helical parameter): 
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 (35) 

We have to notice that the translation of the 

 reference system (joined with the rack gear) is 

defined in correlation with the translation along the 

V  axis in the helical motion: 

 2 cosp     . (36) 

The enwrapping of the surfaces’ family  
2

S


 

regarding the helical surface’s reference system 

represents the primary peripheral surface of the future 

hob mill. 

The enwrapping of the  
2

S


 family, (35), is 

determined based on the complementary theorem of 

the generating trajectories [9]. 

The versor of the normal to the S surface is 

calculated: 

 cos sin 0 sin cos

0 0 1

i j k

n i j          (37) 

and, in this way, the direction of the normal to S, in 

the current point, can be determined, (24) and (37): 
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

 (38) 

where k is a variable scalar value. 
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The A  axis is parallel with V  axis and at 

distance a0 from this (a0 is measured along the 0x x  

axis), see figure 3. 

The SN normal equations, (38), are written in 

the 111 reference system joined with A  and with 

axis parallels to X1Y1Z1 by transformations: 

 

1

1

1

1 0 0

0 cos sin

0 sin cos .

 

   

   

     
     

       
     
     

 (39) 

From (38) and (39) results the form of the SN  

normal, in the 111 reference system with 1 axis 

overlapped to A  axis (see figure 3): 

  
 

 
1 1 1

1

1

1

cos sin ;

sin cos cos

sin ;

sin cos sin

cos .

S

u k

u k

N t

u k

t

  

  

   



   



    

     

 

     

 

 (40) 

By rotating the  
1 1 1

SN
  

 normal, expressed 

in the 111 reference system, around the A  axis, 

with angle 1: 

 

 

 

1 1 1

1

1 1 1

cos 0 sin

0 1 0

sin 0 cos

cos sin

sin cos cos sin ,

sin cos sin cos

u k

u k t

u k t

  



  

 

   

   

   
   

    
   
   

    
 

      
       

 (41) 

is determined the normal’s family at the rack gear’s 

flank, in the 111 reference system: 

  

 

 



 

 

 



1

1 1

1

1

1 1

1

cos sin cos

sin cos sin

cos sin ;

sin cos cos

sin ;

cos sin sin

sin cos sin

cos cos .

S

u k

u k

t

u k
N

t

u k

u k

t



   

  

 

   



   

  

 

      

      

  

     

 

      

      

  

 (42) 

According to the complementary theorem of 

the generating trajectories [9], is imposed the 

condition that the normals’ family  
1

SN


 intersect 

the A  axis, which, in the 111 reference system has 

equations: 

 
1

1

0;

0.
A







 (43) 

If it is eliminated the k parameter from (42) 

and (43) equations assembly, the specific enwrapping 

condition is determined. By equalizing the 1 

coordinate from (42) and (43), results: 

 

1 1

1 1

1

1 1

cos cos sin sin sin

sin cos cos sin sin

cos sin

sin cos cos sin sin

u u
k

t

    

    

 

    

 
 

 


 

 (44) 

and, similarly, for 1: 

 

1 1

1 1

1

1 1

cos sin sin sin cos

sin sin cos sin cos

cos cos
.

sin sin cos sin cos

u u
k

t

    

    

 

    

 
 

 


 

 (45) 

By equalizing the equations (44) and (45), 

results the condition 

 
tan

sin
t u




   , (46) 

representing the enwrapping specific condition, 

which, associated with rack gear’s flanks family, in 

the relative motion regarding the X1Y1Z1 reference 

system (35) determines the primary peripheral surface 

of the future hob mill: 

 

 

 

 

 

 

1 0 2

2

2 2

1 2

1 0 2

2 2

2

cos cos

tan
sin cos

sin

sin cos sin sin ;

cos sin cos

tan
sin ;

sin

cos sin

sin sin cos

tan
cos cos .

sin

X u a

u

u p

Y p u

u

Z u a

u p

u

 


 



    

   






 

   


 



   

 

 

   




   

  



 (47) 

The equations (47) represent a cylindrical 

helical surface with Y1 axis and p helical parameter. 

 

5. HOB MILL’S HELICAL SURFACE 

FORM 

The worm’s form is analyzed as helical surface 

reciprocally enwrapping with a curl of cylindrical 

surfaces with involute profile in frontal plane (straight 

teethed wheel). From (47), for 

 2 0  , (48) 

the generatrix of the helical surface is determined: 
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1

1

1

cos ;

tan
sin cos sin ;

sin

tan
sin sin cos ,

sin

X u a

G Y u u

Z u u




  




  



   

     

     

 (49) 

representing a straight line for which the directrix 

parameters can be defined: 

 

1

2

1

1

cos ;

sin
sin cos ;

sin cos

sin
sin sin .

sin

l

G m

n




 

 


 



 

  

 

 (50) 

At the same time, the directrix parameters of 

the V j  axis are defined in the X1Y1Z1 reference 

system: 

 2 2 20; 1;  0.V l m n    (51) 

The relative position of the two straight lines 

V  and G  is examined. The minimum distance 

between the two lines can be calculated in vectorial 

form, see figure 4. 

 

The angle between the directions G  and V  is 

defined as: 

 tan
G V

G V


 


. (52) 

The vectorial product G V  is calculated: 

 

 

 

2sin sin
cos sin cos sin sin

sin cos sin

0 1 0

i j k

G V
 

    
  

   
       

  
 (53) 

 

 

or 

 
sin

sin sin cos
sin

G V i k


  


 
       

 
(54). 

The modulus of the G V vectorial product is: 

 

2

2 sin
cos sin sin

sin
G V


  



 
    

 
. (55) 

Also, is calculated the scalar product 

 

2sin
sin cos

sin cos
G V


 

 

 
   

 
. (56) 

In this way, from (52) and the definitions of 

the vectorial product modulus (55) and scalar product 

(56), results the definition of the angle between G and 

V: 

 

2

2

2

sin
cos sin sin

sin
tan

sin
sin cos

sin cos


  




 

 

 
  
 

 



. (57) 

The distance between the two straight lines is 

defined by equation: 

 d
G V





, (58) 

where  is the mixed product  , ,r G V  or 

 

0

2

0 0

sin sin
cos sin cos sin sin

sin cos sin

0 1 0

a

 
    

  

   
       

  
 (59) 

 

 

 0

sin
sin sin

sin
a


 



 
   

 
 (60) 

and r is the vector which link two points belonging to 

the lines G  and V , see figure 4: 

 0r a i  . (61) 

So, the minimum distance between the two 

lines, G and V , is 

 

0

2

sin
sin sin

sin

sin
sin cos

sin cos

a

d


 




 

 

 
 

 




. (62) 
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We have to notice that the minimum distance 

(62) represents the radius of a cylinder which admits 

V  as axis and also admits as tangent direction the 

helical surface’s straight line generatrix, (47), see 

figure 4. 

The expressions (57) and (62) can be 

processed, see Appendix 1, so result, from (57), 

 
2 2

cos
tan

tan sin



 
 


. (63) 

Also, from (62), see Appendix 2 and figure 5, 

results 

 
2 2

cos

tan sin

p
d



 





. (64) 

 

 

Fig. 4. The G and V lines, the minimum distance d 

and the  angle 

From (64), results 

 
2 2

cos
tan

tan sin

d

p




 
 


, (65) 

see figure 5 and Appendix 2. 

 

Fig. 5. The unfold of helix with p parameter on the 

cylinder with radius d 

It is obviously that 

   , (66) 

so, the G line is tangent to the worm helix on the 

cylinder with radius d and axis V . 

So, the worm conjugated with the involute 

teethed wheel is an involute worm. 

 

6. CONCLUSIONS 

It is proved, by the complementary method of the 

generating trajectories, that the conjugated worm of a 

straight involute teethed wheel is a cylindrical helical 

surface with constant pitch — an involute worm. 

The involute worm — ruled worm, allows a 

straight line generatrix tangent to the helix onto the 

cylinder with radius Rrt of the hob mill. The 

application demonstrates that the worm’s generatrix is 

on the distance d, see (62), from the axis of hob mill 

and at angle  from this axis. The angle  represents 

the angle of the helix onto the cylinder with radius Rrs, 

condition which represents the definition of the 

involute worm. 

As a consequence, the only helical surface 

reciprocally enwrapping with an involute teethed 

wheel is an involute worm accepted as peripheral 

primary surface of a generating hob mill. 

A rigorous hob mill may be constituted only if 

the cutting edges of the teeth are curves which belong 

to the involute worm. 
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APPENDIX 1 

Expressions of the  angle and d “minimum distance” 

* 

 

2 4 2
2 2 2 2 2

2 2

2

2 2 2 2

2

sin cos cos
cos sin sin cos sin cos 1 sin

sin sin sin

1 cos
cos 1 sin tan sin .

tan tan

  
      

  


   

 

  
            
   

 
      

 

 (67) 

** 

 
 2

0 20 0
0

sin 1 cos sinsin
sin sin sin cos sin .

sin sin sin tan

a a a
a

  
    

   

    
        
 

 (68) 

*** 

 

 

2 2 2 2

2 2 2 2

2 2 2 2

2 2
2 2 2 2

2 2

cos tan sin tan sin
tan

sin tan sin cos sin
tan sin cos

sin cos cos sin cos

tan sin tan sin

1 sin 1 sin
tan cos tan 1 sin

cos cos cos cos

cos t

    

    
  

    

   

 
   

   



 
   

   
   

   

 
  

   
     

   


2 2 2 2

2 2
2 2 2 2 2

2 2

an sin cos tan sin
.

sin 1 sin
tan tan sin tan sin

cos cos

    

 
    

 

 


 
     

 

 (69) 

So: 

 

2 2

2 2 2 2

cos tan sin cos
tan

tan sin tan sin

   

   


  

 
. (70) 

 

 

APPENDIX 2 

 tan
d

V
p

 . (71) 

 

0
0

2 2

sin cos sin
sin sin

sin tan

sin sin
sin cos sin cos

sin cos sin cos

a
a

d
G V

   
 
 

   
   

   
   

  
  


   

 

. (72) 

 
0

2 2 2 2

sin cos

tan sin tan sin

a p
d

 

   

 
 

 
. (73) 

 0

2 2 2 2 2 2

sin cos cos
tan

tan sin tan sin tan sin

ad p

p p p

  


     

 
   

    
. (74) 

It is obviously that the  angle between the G  andV  vectors and the V angle — the angle of helix onto 

the cylinder with radius d of the worm — are equals, see figure 5. 

 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V 

40 

 

APPENDIX 3 

Geometrical values of the teeth and the dimensions of the hob mill 

- circular pitch of the teeth — straight teethed wheel 

 
2 r

c

d

R
p

z

 
 ; (75) 

zd is the number of teeth of the wheel; 

- normal pitch of the generating rack gear, 

 
2

;
rack

r
n c

t

R
p p

z

 
   (76) 

- angle of hob mill’s helix onto the cylinder with radius Rrs: 

 
_

tan
2

ax worm

rt

p

R





 
 (77) 

where _ax wormp  is the axial pitch of the hob mill and Rrt is the rolling radius of the hob mill; 

- 0 tana p    — the relation (26) may be rewritten as: 

 
2


   , (78) 

where  is the angle between the generatrix of the helical surface and the axis of hob mill; 

- from equality condition between the normal pitch of the rack gear and the hob mill: 

 
2

2 tan cosr
rt

t

R
R

z


  

 
     , (79) 

results 
1

sin
rp

rt t

R

R z
   ; (80) 

- the helical parameter of the hob mill 

 
_ 1 1

2 cos 2

ax worm rp

t

p R
p

z  
   

 
; (81) 

- the a0 distance 

 0

1

sin

rp rp rt
t rt

t s t rp

R R R
a z R

z z R
      . (82) 
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