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ABSTRACT 
 

In this paper we propose an analytical method for rotor blade modelling for a 
centrifugal compressor. The considered rotor allows as hub surface a revolution 
surface with circular axial generatrix. The machining is made with a pre-formed 
tool with ball end. In this case, the contact with blade surface takes place both on 
the cylindrical and the spherical zone of the mill. A graphical solution developed in 
CATIA is presented, for a helix with constant axial pitch. 

Keywords: centrifugal compressor, CATIA modelling, pre-formed mill 

1. INTRODUCTION 

Generating blade surfaces of a rotor belongs to a 
centrifugal compressor and it ? is included in the 
frame of free form surfaces machining [1] and may be 
regarded based on the fundamental theorems of the 
surfaces generating by wrapping [2]. 

The complexity of geometrical form for the 
centrifugal compressor as well as the diversity of 
applications for this compressor types in aerospace 
constructions, [3], [4], require CNC machine tools 
with five numerical controlled axis for machining. 

This imposes the tool path planning at the 
machining of these surfaces types. This is a main 
concern in machining. 

Many studies and proposals were made in 
order to increase the machining yield. 

Also, it is noted that the general NC programs 
are ineffective for machining centrifugal pumps [5] 
and it is proposed a mathematical model for tool path 
using an interactive algorithm. 

In order to improve the machining technology, 
Wu et al. propose an innovative approach which puts 
together the machining and the numerical simulation 
of the generation of  centrifugal pumps blades [6]. In 
the same paper, it is proposed a rapid method for 
designing this type of blades. The method is based on 
the cubic spline curves and use machine tools with 
five numerical controlled axes. 

There were studied and proposed methods to 
avoid collision between cutting tool and blank, 
determining the tool trajectory based on the blade and 
hub geometric model. 

In this paper, we propose a method for blade 
generating, developed in analytic form, based on the 
generating trajectories, for machining a rotor of 
centrifugal compressor. It was developed a specific 
algorithm for a hub with circular generatrix. Also, it 
was developed, in CATIA, a graphical model of 
generating with end ball mill. 

 
2. GENRATING KINEMATIX. 

REFERENCES SYTEMS 

In what follows, it is studied the analytic modelling of 
blade generating for a hub with revolution body, with 
radius R0, see figure 1. 

In figure 1 are presented the reference systems 
associated with the rotor support and the cutting tool 
(end mill tool with composed profile: straight line and 
circular profile at tool end). The tool axis is inclined 
regarding the rotation axis and the tool end has radius 
r0. 

It is defined the radius of the axial hub profile, 
R0. The circle’s arc is defined between the normals 
tangent to the MN  arc, see figure 2. The points M 
and N represent the contact points of the MN  arc 
with the hub limit’s, with radii Rb and Rt. 
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Fig. 1. Hub with axial circular profile; reference systems 

 
Fig. 2. Axial hub’s section 

The normals to the MN  arc, in M and N limits 
determine the centre of the circle’s arc, point O. 

The values of R0, Rb and Rt radii are accepted 
as constructive values. 

Are defined the following reference systems: 
— XYZ global reference system, with Z axis 

joined with hub; 
— X0Y0Z0 mobile reference system, with origin 

in O1, a current point onto the hub’s circular 
generatrix; 

— ' ' '
0 0 0X Y Z  mobile reference system, initially 

overlapped to XYZ, joined with X0Y0Z0 in the helical 
motion with V


 axis and p helical parameter. The V


 

axis is overlapped to Z axis. 

— X1Y1Z1 reference system, with X1 axis 
overlapped to peripheral surface of end mill tool. 

The generating kinematics includes the 
rotation around the  V Z


 axis, the movement I, 

linked with the translation movement II, along the V


 
axis. 

The rotation of the end mill tool around the A


 
axis, III movement, is a cutting motion. The tool 
cutting edges belong to S surface, the primary 
peripheral surface of the end mill tool. 

We have to notice that in the II motion, the S 
surface is self-generated. So, this motion does not 
affect the generating process. The helical surface 
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generating is defined only by the assembly of motions I and II. 
 

 
Fig. 3. Generating kinematics 

Regarding the position of points M and N onto 
the axial generatrix of the hub, there are defined the 
angles 1 and 2, as angles between the normals to the 
G profile and X axis.  

It is denoted with  the angle between the 
normal to the axial profile of the hub and the X axis, 
in the contact point of the end mill with the G 
generatrix, the point P (see figure 2). 

 
3. COORDINATES 

TRANSFORMATIONS. ANALYTIC 
MODEL OF THE GENERATING 
TRAJECTORIES FAMILY 

It is defined the relative position of the X1Y1Z1 
reference system regarding the X0Y0Z0 axis, with X1 
axis of end mill: 
  0 2 1X X   , (1) 
where  is: 

  2

cos 0 sin
0 1 0

sin 0 cos .

 

 

 

 
 

  
 
 

 (2) 

It is also defined the relative position of the 
' ' '
0 0 0X Y Z  and X0Y0Z0 reference systems, 

 '
0 0X X A  , (3) 

 
 0 1cos cos

0
.

R R
A

p

 



    
 

  
   

 (4) 

The link between the  angular parameter and 
the  parameter is defined as: 

  0 1
0

1sin sinR p
R

      . (5) 

The rotation motion around the V


 axis, with  
angular parameter, is given by: 
  3 0

TX X    (6) 
or, from (3), 
    3 0

TX X A    , (7) 
and, if consider equation (1), we obtain: 
    3 2 1

TX X A         , (8) 
representing the movement of X1Y1Z1 space, joined 
with the end mill tool, regarding the XYZ space, 
joined with helix. 

Developing we obtain the form: 

 1 0 1

1

1

cos sin 0 cos 0 sin
sin cos 0 0 1 0

0 0 1 sin 0 cos

cos cos
0

X
Y
Z

X R R
Y
Z p

   

 

 

 



       
     

      
          

    
  

    
       

 (9) 
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After developments, we reached the form, see 
(5): 

 



 



 

 

1 1

0 1 1

1 1

0 1 1

1 1 0 1

cos sin

cos cos cos sin ;

cos sin

cos cos sin cos ;

sin cos sin sin .

X X Z R

R Y

Y X Z R

R Y

Z X Z R

 

   

 

   

   

   

  

   

  

    

 (10) 

The equations (10) represent the generating 
trajectories family of points belonging to space 
X1Y1Z1, joined with pre-formed tool, regarding the 
global reference system, joined with the helix. 

If, from all the points belonging to the X1Y1Z1 
space, are selected those belonging to the peripheral 
primary surface geometric locus, so the relations (10) 
represent the generating trajectories family of S 
surfaces regarding the helix — the generated blade 
surface. 

3.1. Pre-formed tool surface — S 

In figure 4 it is presented the axial section of 
pre-formed tool and the associated reference system. 

 
Fig. 4. Axial tool’s profile — S 

The axial profile of the pre-formed tool is 
composed from two filled elementary profiles: 

— AB , arc with equations: 

 
1 0 0

1

1 0

cos ;
: 0;

sin ,

X r r v
AB Y

Z r v

 



 

 (11) 

 min max0;  .v v k   (12) 
Coordinates of B point: 

 
1 0 0

1

1 0

cos ;
0;

sin .

B

B

B

X r r
Y
Z r





 



 

 (13) 

— BC , straight line profile, with equations: 

 
 1 0

1

1 0

1 cos sin ;
: 0;

sin cos .

X r u
BC Y

Z r u

 

 

   



  

 (14) 

Revolving the equation assembly (11) and (14) 
around the Z1 axis, the parametrical equations of the 
tool primary peripheral surface are obtained. 

For BC zone, the equations are obtained: 

 
 

 

 

1 0

1 0

1 0

1 cos sin ;

: sin cos sin ;

sin cos cos ,

X r u

S Y r u

Z r u

 

  

  

  

 

  

 (15) 

with   angular parameter, at rotation around the Z1 
axis (the conic pre-formed tool’s axis). 

The equations assembly (10) and (15) 
represent the generating trajectory family for points 
belonging to S tool surface, regarding the XYZ 
reference system, joined with helix. 

3.2. Enwrapping condition for 
trajectories family 

The enwrapping of the trajectories family (10), (15) 
represents the generated blade surface, meaning the 
blade of the rotor. 

The variables, in the equations (10) and (15) 
assembly are:  —angular parameter for rotation 
around Z axis;  — angular parameter for rotation 
around Z1 axis; u — linear parameter for translation 
along the cone generatrix. 

In this case, the enwrapping condition for 
generating trajectories family (10) and (15) is 
expressed in form: 
  , , 0uR R R  

  
. (16) 

where vectors ,  ,  uR R R 

  
 are partial derivative from 

(10), (15): 

 

;

;

.
u u u u

R X i Y j Z k

R X i Y j Z k

R X i Y j Z k

   

   

  

  

  

    
    
    

 (17) 

From (10) there are determined the partial 
derivatives: 

 



 



 

1 1

0 1 1

0 1 1

1 1

1 1

0 1 1

1 1

sin cos

sin cos cos sin

cos cos sin cos ;

sin cos

sin sin cos sin

cos cos cos sin ;

cos s

d dX X Z
d d

dR X Z
d

R R Y

d dY X Z
d d

dR X Z
d

R R Y

dZ X Z
d







 
 

 


   



   

 
 

 


   



   







   



   



   


  



   



   

 






0in cos .d dR

d d
 

 
 


 (18) 

It can be observed that, from (5), results: 
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 1
0

arcsin sin p
R

  
 

  
 

 (19) 

and, so, 

 0
2

1
0

1 sin

p
Rd

d p
R





 





 
  
 

. (20) 

As well, the partial derivatives are defined 
regarding the  variable, see (15): 

 

 

 

1 1 1

1 1 1

1 1

cos sin cos sin ;

cos sin sin cos ;

sin cos ,

X X Z Y

Y X Z Y

Z X Z

  

  

 







   

   

 

  

  

 

   

   

  

 (21) 

where, see (15), the partial derivatives are defined: 

  

 

1

1 0

1 0

0;

sin cos cos ;

sin cos sin .

X

Y r u

Z r u







  

  



 

 






 (22) 

There are defined the partial derivatives 
regarding u parameter: 

 

 

 

1 1 1

1 1 1

1 1 1

cos sin cos sin ;

cos sin sin cos ;

sin cos .

u u u

u u u

u u u

u

u

X X Z Y

Y X Z Y

Z X Z

   

   

 

  

  

 

   

   

  
(23) 

 

1

1

1

sin ;

cos sin ;

cos cos .

u

u

u

X

Y

Z



 

 



 

 






 (24) 

3.3. The characteristic curve 

The characteristic curve represents the contact curve 
between the S surface, (15), and the blade surface. 

The characteristic in the generating process, in 
the XYZ reference system, is obtained by associating 
the trajectories family (10), the enwrapping condition. 

In principle, the trajectories family has form: 

 
 

 

 

, , ;

, , ;

, , .

X X u

Y Y u

Z Z u

 

 

 







 (25) 

The enwrapping condition is: 
  , , 0uR R R  

  
. (26) 

In addition, for the geometric locus of the 
contact points to be a curve, the  parameter has to be 
constant: 
 const.   (27) 

The (25), (26) and (27) equations assembly 
represents, in the XYZ reference system, the 
characteristic curve, the geometric locus of contact 
points between the S surface and , surface of rotor’s 
blade, joined with the hub, but not defined yet. 

In this way, for  0  , the assembly of partial 
derivatives is determined from (18): 

 

0 1 1

0 1

0 1 1

0 1

0 1 1 0

sin cos

sin ;

cos sin
cos cos ;

cos sin cos .

d dX X Z
d d

dR Y
d

Y X Z
R R

d d dZ X Z R
d d d







 
 

 






 

 

  
  

  







   

 

  

  

  







(28) 

and 
0 10 cos

d p
d R



 

 
  

 
. 

Also, the partial derivatives regarding the U 
linear parameter, for =0, from (23): 

 
 

 

 

1 1 1 10

10

1 1 1 10

cos sin ;

;

sin cos .

u uu

uu

u uu

X X Z

Y Y

Z X Z







 

 







 



 

  

 

  

 (29) 

Similarly, the partial derivatives are calculated 
regarding the  angular parameter, for =0, from (21): 

 
 

 

 

1 1 1 10

10

1 1 1 10

cos sin ;

;

sin cos .

X X Z

Y Y

Z X Z

  

 

  

 

 







 



 

  

 

  

 (30) 

Now it is possible to write the enwrapping 
condition (26) as: 

 

 

 

 

   

1 1 1 1 1 0 1
0 1

0 1 1 1 1

0 1 1 1 1
0 1

0 sin sin cos sin
cos

sin cos cos cos sin cos sin 0.

sin cos sin cos cos cos sin
cos

pY X Z R
R

r u X Z R
pr u p X Z

R

   


      

      


     

    

    

 (31) 

The condition (31) can be rewrite in form: 
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 

 

1 1 1 1 0 1
0 1

1 1 1 1

1 1 1 1
0 1

0 tan sin cos sin
cos

cos sin cos sin 0.

sin cos cos sin
cos

pX Z R
R

X Z R
pp X Z

R

   


   

   


   

  

  

 (32) 

 
Further, equation (32) and surface’s family 

(10), with condition =0, is rewritten as: 

 
 

1 1

0 1

1

1 1

cos sin

cos cos ;

;
sin cos ,

X X Z

R R

Y Y
Z X Z

 

 

 

  

    



 

 (33) 

representing the characteristic curve on the blade’s 
flank. 

In relations (32), (33), X1, Y1 and Z1 have 
meanings give by relations (15). 

Really, the (33) equations represent functions 
depending from parameters  and u: 

 
 

 

 

, ;

, ;

, .

X X u

Y Y u

Z Z u













 (34) 

The (32) condition represents, in principle, an 
algebraic link between variables u and , in form 
  u  . (35) 

Similarly, equations (15) and (32)assembly 
represent a spatial curve in the X1Y1Z1 reference 
system, meaning the characteristic curve, identically 
to those from the blade flank. 

Moving the characteristic curve: 

 
 

 

 

1 1

1 1

1 1

;

;

,

X X u

Y Y u

Z Z u







 (36) 

with u variable parameter, with law (8), 
    3 2 1

TX X A         , (37) 

with  3

cos sin 0
sin cos 0

0 0 1

T
 

   

 
 

  
 
 

, 

 2

cos 0 sin
0 1 0

sin 0 cos

 

 

 

 
 

  
 
 

 and 

 0 1cos cos
0

R R
A

p

 



  
 

  
 
 

. 

The equation of the blade surface, in XYZ 
reference system, has parametrical form: 

 
 

 

 

, ;

, ;

, .

X X u

Y Y u

Z Z u



 









 (38) 

The generated blade shape is highlighted in 
plane sections perpendicular to the hub axis, in form: 
 Z H , H — variable, (39) 
  ,Z u H  , (40) 
equivalent with a principle form 
  u u  . (41) 

In this way, the curves representing the 
generated blade profiles are defined by equations 
(matrix of coordinates): 

 

1 1

2 2
H

n n

X Y H
X Y H

X Y H



 
 
 
 
 
 

  
, H variable. (42) 

 
4. NUMERICAL APPLICATION 

It is presented a numerical application for a rotor with 
characteristics: 
- top radius of the hub Rt = 30.111 mm; 
- bottom radius of the hub Rb = 100 mm; 
- radius of hub’s axial profile, see figure 2, R0 = 150 
mm; 
- angle 1 = 60; 
- angle 2 = 15; 
- helical parameter p = 100 mm. 

In order to graphically solve the problem, five 
crossing planes were generated, P1… P5. These are 
crossing planes of the hub, where were drawn the 
segments, L1 … L5, with length corresponding to the 
radius of intersection circle between the spherical 
surface and the plan (see figure 5). The angle between 
these segments and the X axis corresponds with the 
value gives by the helical parameter and the crossing 
plane elevation, according to the equation: 

 
180 H

p










 [deg]. (43) 

Between the ends of these segments is drawn a 
spline curve, G, which will represent the trajectory of 
the mill tool axis end in its relative motion regarding 
the conical surface. 



FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 

47 

It is generated a suit of planes, 1 … 5, each i 
plane being defined by two lines. One of these lines is 
the Z axis, the other is the Li line. 

In each of the i plane, the spline curve is 
projected, obtaining the  in-plane curve, see figure 5. 

The toll axis position, for each of the M1 … M5 
points, is obtained as perpendicular to the projected 
curve and passing through the current point Mi, i = 
1…5, see figure 4. 

A new suite of planes is generated, P’1 … P’5, 
perpendicular to the G spline, each P’i plane passing 
through one end of the tool axis. In each of these 
planes is drawn a segment rvi, perpendicular to the Li 
corresponding segment and with length equals to the 
tool top radius. 

It is drawn a spline curve which materializes 
the trajectory of the second end of the tool axis, the G1 
curve, see figure 5. 

A new suite of five planes is generated, P”1 … 
P”5, perpendicular to the G1 spline curve. Each P”i 
plane passes through the point which corresponds to 
the second end of mill axis. 

In each of these planes is drawn a segment rbi, 
perpendicular to the Li segment and with length 
equals to the tool bottom radius. 

 
Fig. 5. Construction of geometric features needed for 

graphical solving of problem 

There are drawn two spline curves, G’, passing 
through the ends of rvi segments, and G’1 passing 
through the ends of rbi segments, i = 1…5. 

A sweep surface is generated, with two guiding 
curves, namely both spline curves, G1 and G’1. 

 

 
Fig. 6. Rotor blade surface 

The sweep surface is intersected with planes 
Z = H. 

In figure 7 and table 1 are presented crossing 
sections of the blade, in planes Z = H, with H 
variable. 

Table 1. Coordinates of points from the crossing 
sections of the blade [mm] 

H=0 [mm] H=22.770 [mm] 
X Y Z X Y Z 
102.778 4.732 0.000 118.530 10.447 22.770 
102.062 4.969 0.000 106.282 15.794 22.770 
101.344 5.202 0.000 93.442 19.493 22.770 
100.626 5.430 0.000 80.209 21.341 22.770 
99.905 5.654 0.000 66.848 21.217 22.770 
H=45.540 [mm] H=68.311 [mm] 
X Y Z X Y Z 
117.719 26.675 45.540 77.830 56.005 68.311 
99.687 33.572 45.540 63.194 52.941 68.311 
80.566 36.157 45.540 49.518 46.880 68.311 
61.396 33.971 45.540 37.177 38.415 68.311 
43.303 27.252 45.540 26.238 28.192 68.311 
H=91.081 [mm]    
X Y Z    
45.254 69.512 91.081    
43.129 67.651 91.081    
41.063 65.724 91.081    
39.057 63.735 91.081    
37.108 61.690 91.081    
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Fig. 7. Crossing sections of the rotor blade; points 

onto the crossing sections 

6. CONCLUSIONS 

This paper approaches in analytical form the issue of 
generating a blade of a rotor, which admits as hub a 
revolution surface with circular generatrix. The blade 
is generated with an end mill tool with a composed 
primary peripheral surface: a conical and a spherical 
surface. 

The used method is the generating trajectories 
method, determining the composed surfaces family, in 
the reference system joined with hub. 

The model of propeller blade surface is 
graphically generated, following the generating 
motion along the hub circular generatrix. 

The methodology applied for the process is 
rigorous and easy to apply. 

The presented methodology is applicable for 
complex shapes of hubs, too. 
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