
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING,

ISSN 1221- 4566, 2017

73

APPLYING RELATIONAL DATABASE TO SIMULATE THE

RECONFIGURABLE MANUFACTURING SYSTEM

Florin TEODOR
1
, Vasile MARINESCU

2
,

Cătălina MAIER
2
, Viorel PĂUNOIU

2

1
Faculty of Naval Arhitecture, “Dunărea de Jos” University of Galaţi

2
"Dunărea de Jos" University of Galaţi, Manufacturing Engineering Department

theo.florin@gmail.com

ABSTRACT
The operation of reconfigurable manufacturing systems (RMS) involves frequent

changes in the structure and properties of different sales items, which implies the need

to store and use a large amount of data. In this paper, we present an original solution

to manage this problem. Storing the data of a RPD3D Petri network that models a

RMS (and concerning its components, the relations between them, commands

concerning different products and related operations, the information about RMS

resources) can be done through a MySQL database. The transfer of the mentioned data

and of the schedules concerning the expert numerical system entitled SODRMS

(System for Optimal Driving the RMS) and having the architecture of a web portal
implemented in Java with Java3Dgraphical elements, can be also realized by using the

same MySQL database. SODRMS addresses to managers, which have to evaluate the

received orders in terms of performance and to control the entire manufacturing

process, from client order up to products delivery. The data regarding each order

(product) can be recorded from the database in a SQL-type file and reloaded when

needed (e.g. if intending to replay the simulation of fulfilling that order, with modified

input parameters). Another application for such a database refers to the use of the

compacting algorithm applicable to RPD3D Petri networks. This is necessary because

they deal with high amounts of data and it enables to reach a compact visualization of

these networks having large dimensions, by giving a new perspective on the simulation

of a RMS functioning. The use of MySQL database for optimal controlling RMS-s has
also the advantage of enabling the diversification of characteristics concerning the

constitutive elements of the RPD3D Petri networks, by specific means.

KEYWORDS: reconfigurable manufacturing systems, resources allocation,

relational database, Petri network

1. INTRODUCTION

The operation of reconfigurable manufacturing

systems (RMS) implies frequent changes in the

structure and properties of its various elements, which

implies the need to store and use a large amount of

data.

A comparison between relational databases

and data warehouses is able to provide a coherent

picture of their role in supporting manufacturing

activities as well as relationships with other types of

information systems. Both databases and data

warehouses contain large amounts of structured data

that can be quickly accessed through optimized access

structures and is based, in most cases, on relational

technologies. However, they have not been designed

from the same objectives and are distinguished by

many aspects.

Database management systems are appropriate

to current management applications and serve to

create and maintain operational database systems.

These systems, known as OLTP (On-Line Transaction

Processing) systems, have as objective the on-line

execution of transactions and query processes. They

incorporate all day-to-day operations in an

organization such as: supplies, stocks, production,

settlements, payments, accounting. Data warehouse

systems, on the other hand, serve users or data

analysis and decision-makers. Operational systems

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

74

databases contain current, detailed data that need to be

updated and quickly queried under full security,

providing support for Transaction Processing

Information Systems (TPS).
Data warehouses are specifically designed to

support decision-making. They aim at aggregating

data, aggregating and synthesizing them, organizing

and coordinating information from different sources,

integrating and storing them to give decision makers

the right image to allow effective information

retrieval and analysis. Common queries in a data

repository are more complex and varied than those in

database management systems. They apply to very

large volumes of data and involve complex

calculations (trend analysis, averages, dispersions,

etc.) that often require aggregations (group by

clauses).

An operational database is designed and

adapted from known tasks and activities such as

indexing, using primary keys, searching for specific

records, optimizing queries.

The separation between operational BDs and

data repositories is based on structure, content, users

and different data. Decision making requires historical

data, whereas operational databases do not usually

contain historical data. In this context, operational

data, though abundant, are usually far from complete

for decision-making. Assisting the decision requires

data to be consolidated (aggregations and

aggregations) from different sources, resulting in

high-quality, clean and integrated data.

Concluding, for storing and managing RMS

data (data about its elements, data links, data about

RMS commands - with related products and

operations, data about RMS resources - equipment

that competes in the production of ordered products ,

data related to the RMS time evolution - simulation of

its manufacturing), including reconfiguration data, we

chose to use a relational database, one of the simplest

and best known, which has proven over time its

stability and reliability, ie a MySQL database.

The transfer of the above data as well as the

work programs for the expert computer system, called

S.O.D.R.M.S. (System to Optimal Driving for RMS),

with web portal architecture implemented in Java

language with Java3D graphics elements for

managers to evaluate incoming orders in terms of

performance and control the entire production process

from customer demand to when delivering products, it

is also done through the same MySQL database

(writing, reading, updating, saving and restoring

data); The data for each command (product) can be

saved from the database in an SQL file and reloaded

into the database, then the resumption of the

production simulation of that command (with

modified data) is desired.

Another use of the database is given by the use

of the RPD3D Petri Network Compaction algorithm,

which generates a large amount of data and which is

useful for compact viewing of these large-scale

networks, and to provide novel insights into

simulation of the operation of an RMS.

The MySQL server is offered free of charge

for Unix, Windows and MacOS under the GNU

General Public License (GPL) by the Swedish

company MySQL AB, the most popular open-source

SGBD at present, the open-source character being

important through prism further developments.

The use of a MySQL database in optimal RMS

management also allows for the diversification of

features associated with the three-dimensional Petri

net type RPD3D that are used to model the operation

of reconfigurable manufacturing systems by:

 Entering the scale for RPD3D elements - a larger

dimension of the element suggesting a greater

importance of that element within the Petri

network;

 Insertion of the visibility feature of the

constituents of RPD3D, used for the level zoom

function;

 Draw the links between the network elements

according to the value of the weight attribute - the

necessary attribute for the network

reconfiguration (the weight 3 is allocated to the

links between the elements of the RPD3D

constructing a module, the weight of the 2 links

between the modules located on the same

hierarchical level and the weight 1 of the links

between the modules on different hierarchical

levels) - the higher the weight, the longer the

binding becomes worse.

 Inserting the TimeToBuild attribute (TTB) - the

length of materialization or the unlinking of the

link in the reconfiguration process - directly

proportional to the weight of the link.

 Inserting the TimeToFinish attribute (TTF) -

contained in the PRD table of the database, its

value gives the manufacturing time in seconds of

a copy of the product;

 Inserting the TimeToExclude attribute (TTE -

time to exclude a resource from RMS)

 Inserting the TimeToIntegrate attribute (TTE -

time to include a resource in RMS);

 Inserting the TimeStamp attribute (in each

database table) to mark the time of creation of

that item. The value is useful for reconfiguration,

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

75

comparing the current time with TSTP to find out

how old that element is. In the OPT table, you

can set the TSTP_mode variable so that the oldest

/ new element / module is removed from the

system when reconfiguring the RMS.

2. DATABASE TABLES

The first thing to do is create the MySQL database

using the Create Database command, a database that

will store and manage all data related to the definition

and operation of the assisted reconfigurable

manufacturing system called rmsdb.

Once the database is created, it follows the

actual creation of component tables by running an

initialization file with the .SQL extension, which will

contain commands such as Create table table_name.

The rmsdb database tables are shown in Figure

1, their grouping (indicated by the common color)

being based on the data contained and their role in the

RMS operation. The entire manufacturing process can

be modulated by associating generic RPD3Ds to each

RMS resource and to each technological process flow

that produces a product on that RMS, these generic

RPD3Ds differ only through work parameters and
status. They can be predefined, can be edited and

saved in the form of modules, the values of the

working parameters that individualize the products,

respectively the technological process of their

manufacture, being saved in the database.

The first set of tables (the red ones in Figure

1) are required for building and storing RPD3D

modules, editable modules that will be used to

simulate resource operation or technological

operations.

The POS, TRZ, LEG, and CON tables are used

to create a RPD3D module, and its data is

subsequently saved in two other tables: MODULES

(where we find all the created modules and the

moment of creation) and MOD_xxx (constructive of

the module, concatenated from the four original
tables).

According to the MySQL-based database

organization, the data is stored in tables, each table

being associated with a matrix that has a finite

number of descriptors (matrix columns) and an

unspecified number of records (matrix rows).

The second group of tables (the orange ones

in Figure 1) - CMD, PRD, OT, FT and OT-RES, are

required for storing data related to the manufacturing

process - commands, products, operations and

technological flows, and their interdependence with
RMS resources.

The third group of tables (the blue ones in

Figure 1) are required for storing the data related to

the resources of the reconfigurable manufacturing

system (RES, AGV), Order Ordinance (POR), and

keeping data on the evolution over time and

influencing this evolution of manufacturing made on

RMS (OPT and PRODUCTION or FAB).

Another table related to the RMS

reconfiguration evolution is the LOG table.

OT-RES

AT

CON

POZ TRZ

LEG

MOD_001

MOD_002

MOD_999

modules

saved

related

RES or

OT

FT
CMD PRD OT RES

system stability,
variable computing

capacity

MRJ

AT_R5
AT_R3 AT_R4

Change
state

resources

Accept new
orders

MODULE
SIM

R3
SIM

R5

SIM

R4

POR

PRODUCTION

OPT

IMPORTANT
AT AT_R3, AT_R4, AT_R5 - are all the same

table (AT) updated after every
reconfiguration R3, R4, R5 or modification

of data from simulations

LOG

AGV

SIM

R2

Fig. 1: Relationships between database tables associated with RMS

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

76

The last set of tables (the green and yellow

ones in Figure 1) are required to store the data for the

reconfiguration process to allow both the return of the

manufacturing system to a previous state and

simulation of the system evolution to a later state if

the simulation results are favorable to evolution

towards that state.

The AT, AT_R3, AT_R4, and AT_R5 tables

contain the evolution data of the same production

workshop (AT) reconfigured in one of the

reconfiguration options R2, R3, R4 or R5.
The SIM R2 R2, SIM R3, SIM R4 and SIM R5

tables contain factory production simulation data

(AT) reconfigured in one of the reconfiguration

options R2, R3, R4 or R5.

The MRJ table contains the evolution data for

the three-dimensional Petri network that simulates the

operation of the reconfigurable manufacturing system.

Next, the tables of the first group will be

presented, specifying the descriptors and the

usefulness of storing those data.

Like any Petri network, the RPD3D modules
are made up of two main types of elements: positions

and transitions linked together by segments oriented

by different weight (thickness).

A position can model operations (processing,

transport, manipulation, assembly, etc.), fixed

resources (processing centers, AGVs, robots),

variable resources (pallets, parts, buffers), or various

operating conditions are called O-positions).

POZ table - stores data of position elements

from a RPD3D module.

1 - position ID;

2 - position name (position identifier);

The positions of the resources the number of

which is fixed in the design planning, such as robots,

machines and conveyors are called R-positions, and

positions corresponding to variable resources (blades,

pieces or tasks for be processed) with role in resource

sharing are called V-positions. The marking of

variable resources must be determined so that the

system can not become blocked or run empty (sub-

capacities).

There are also intermediate positions called I-

positions that can model operations involving a

variable number of resources, such as buffering or

warehouse operations, or to facilitate the maintenance

of some behavioral properties of modeling systems.

At the same time, in order to allow the ordering of the

activities of the different subsystems, the positions

that shape the control information required for the

ordination, called C-positions, are maintained.

3 - position description (max 40 characters);

4 - the initial position mark;
5, 6, 7 - the coordinate X, Y, Z of the position

center (real number);

8 - position scale (real number) - the size at

which the position is represented (0.5X = 0.5, 1X =

1.0, 2X = 2.0 and 3X = 3.0), a larger element size

suggesting greater importance of that element within

the Petri network (VOC type V which models the

availability of a robot - RI Ready - have a 2X scale,

and the IO type that models intermediate states of the

system are 0.5X scale);

9 - the maximum allowable time for the
modeled mode operation (τmax) - in seconds.

10 - Position visibility - 1 (ON) and 0 (OFF) -

used for level zooming;

11 - Time stamp (Position Time Stamp)

(integer no more than 19 digits) - time of insertion of

the position in the form of a 10-digit numeric

sequence;

When inserting, the TimeStamp field value is

calculated automatically and can be used to

reconfigure RMS (compare current time to the value

of TSTP and find out which link or 3D object is more

recent or older.

 Ex: 1256953732 = Sat Jul 23 02: 16:57 2005

TRZ table - stores data of transition type

elements from a RPD3D module.

1 - Transition ID (integer no. Max. 9 digits);

2 - transition name (transition identifier);

The transitions that represent the beginning or

end of an operation are called O-transitions (TOnnn),

and transitions that trigger sub-networks for error

handling are called E-transitions (TEnnn).

3 - Transition description (max 40 characters;

4, 5, 6 - the X, Y, Z coordinate of the transition

center (real number);

POZPOZ

01. ID_POZ (int 10) / notnull / autoincr / primary key

02. DEN_POZ (vchar 10) / notnull / def ‘ ‘

03. DESCR_POZ (vchar 40) / def ‘ ‘

04. MARCAJ (int 10) / notnull / def 0

05. X_POZ (double) / notnull / def 0.0

06. Y_POZ (double) / notnull / def 0.0

07. Z_POZ (double) / notnull / def 0.0

08. SCALE_POZ (double) / notnull / def 1

09. TIMP_EXEC_POZ (int 10) / notnull / def 0

10. VIZ_POZ (int 1) / notnull

11. TSTP_POZ (Bigint 20) / notnull

TRZTRZ

01. ID_TRZ (int 10) / notnull / autoincr / primary key

02. DEN_TRZ (vchar 10) / notnull / def ‘ ‘

03. DESCR_TRZ (vchar 40) / def ‘ ‘

04. X_TRZ (double) / notnull / def 0.0

05. Y_TRZ (double) / notnull / def 0.0

06. Z_TRZ (double) / notnull / def 0.0

07. ERR_TRZ (int 5) / notnull / def 0

08. SCALE_TRZ (double) / notnull / def 1

09. VIZ_TRZ (int 1) / notnull

10. TSTP_TRZ (Bigint 20) / notnull

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

77

7 - initial transition error code (full integer

with max 4 digits);

Thus, a maximum of 105 error codes,

sufficient for any RPD3D module, can be defined,

each error code having a description and an error-

solving mode, even though for most of these error

codes, solving is the passing of the resource into the

state D (Damaged) and its exclusion from the RMS.

8 - the transition scale (real number) - the size

at which the transition is represented

(0,5X,1X,2X,3X);

9 - Transition visibility - 1 (ON) and 0 (OFF) -

used for level zooming;

10 - Time stamp - Transition Time Stamp -

transition time;

The links between the elements (arcs) are

oriented (meaningful) and carry information about the

reconfiguration process of the manufacturing system.

LEG table - stores the data of link elements in a

RPD3D module, which can be associated with a

production workshop resource or a technological

operation from a product manufacturing stream.

1 - link ID;

2 - link name (link identifier);

3 - position name (position identifier);

4 - transition name (transition identifier);

5 - the meaning of the link - (1 direct, -1

inverse);

6 - the weight of the link (probability of

disappearance of that link to a possible

reconfiguration);

The value 3 is assigned to the arcs between the

RPD3D constituent elements of the RPD3D modules,

the weight 2 is given to the arcs between the RPD3D

modules located on the same level and the weight 1 is

allocated to the arcs between the RPD3D modules

located on different hierarchical levels. Thus, the

thickness of the link indicates the strength of the link,

a weaker link indicating a greater probability of

disappearance of that link to a possible

reconfiguration of the system, the strongest being 3

and the weakest 1.

7 - Description of the link - especially for links

with weights 1 and 2;

8 - TTB_LEG - TimeToBuild_LEG - the

information, in seconds, which represents the duration

of materialization or unlinking in the reconfiguration

process, directly proportional to the weight of the

link.

9 - Link visibility - 1 (ON) and 0 (OFF);

10 - Time stamp - Time stamp of the link -

holds the moment of inserting the link in the form of a

10-digit numeric sequence, and is useful for

comparing the links to each other according to their

age.

In the RPD3D model, to easily make

connections between different RMS modules placed

on the same level or at different levels, a third type of

element, called a connector, was adopted, represented

by a cube with the side equal to the radius of the

sphere represents a position (the color is red if the

value is "OFF" or green if the value is "ON"), the

connectors being arranged on a sphere circumscribing

RPD3D in compact form (obtained after the

compaction operation).

The base connectors 6 are placed at the points where

the coordinate axes intersect the sphere comprising

compact RPD3D and are called M1 (y +), M2 (x +),

M3 (z +), M4 (x-), M5 z-), M6 (γ-). If these 6

connectors are not sufficient for the module links,

then there are 12 additional connectors, located

between the 6 base units, called M12, M13, M14,

M15, M23, M25, M26, M34, M36, M45, M46 , M56.

Outside the module, the six connectors are connected

by weight arrays 1 or 2 by other connectors, and

inside the module they are connected by weight arrays

3 to control positions to which they transmit the

various orders given from the higher hierarchical

levels: start or end of an OT, transfer of the number of

completed finished pieces, change of the state of a

RES).

The connectors do not influence the RPD3D

mode of operation or analysis to which they are

associated but only have the role of transmitting to

LEGLEG

01. ID_LEG (int 10) / notnull / autoincr / primary key

02. DEN_LEG (vchar 10) / notnull / def ‘ ‘

03. DEN_POZ (vchar 10) / notnull / def ‘ ‘

04. DEN_TRZ (vchar 10) / notnull / def ‘ ‘

05. SENS (int 1) / notnull / def 0

06. PONDERE (int 1) / notnull / def 0

07. DESCR_LEG (vchar 40) / notnull / def ‘ ‘

08. TTB_LEG (int 10) / notnull / def 0

09. VIZ_LEG (int 1) / notnull

10. TSTP_LEG (Bigint 20) / notnull

CONCON

01. ID_CON (int 10) / notnull / autoincr / primary key

02. ID_MOD (int 10) / notnull

03. DEN_CON (vchar 10) / notnull / def ‘ ‘

04. DESCR_CON (vchar 40) / def ‘ ‘

05. X_CON (double) / notnull / def 0.0

06. Y_CON (double) / notnull / def 0.0

07. Z_CON (double) / notnull / def 0.0

08. PLI (vchar 10) / notnull / def ‘ ‘

09. PLE (vchar 10) / notnull / def ‘ ‘

10. PONDERE (int 1) / notnull / def 2

11. VIZ_CON (int 1) / notnull

12. TSTP_CON (Bigint 20) / notnull

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

78

and from the RMS higher levels the commands that

will result from the reconfiguration process or the

RMS operation.

The CON table - stores the data of the

connector type elements in a RPD3D module, the way

that can be associated with a production workshop

resource or a technological operation from a product

manufacturing stream.

1 - Connector ID;

2 - RPD3D module ID;

3 - connector name; Ex: M1-MOD23 (M1

connector associated with module 23 of RMS);

4 - description of the connector;

5, 6, 7 - The fields X_CON, Y_CON and

Z_CON are the relative coordinates of the connector

to the circumference of the sphere;

8 - PLI - Internal link position (inside the

module) - Ex: "C2"

9 - PLE - External Link Position (Module

Connector) - Ex: "M1_MOD_23"

10 - Weight - value 1 for links between RMS

modules on different levels and value 2 for inter-

module linkages;

11 - Connector visibility - 1 (ON) and 0 (OFF);

12 - Time stamp - the time of insertion of the

connector in the form of a 10-digit numeric sequence;

Identifying the activities and resources needed

to process a product begins by defining a product

processing order on the RMS.

After creating a RPD3D module, its data is

saved in two tables: MODULE and MOD_xxx.

Upon editing a module, the data is saved in the

database, and then the editable graphics module is

passed into a compact graphical form, this being an

operation by which the Petri elements are

concentrated inside a sphere of the smallest diameter.

After compaction, the circumscribed sphere of

the module is generated, the bookmarks are generated

and the data is re-stored in the database, in a SQL

table called MOD_nnn, where nnn is a self-enhanced

number.

The MODULE table - where we find all the

modules created, the technological operation they

describe and the moment of creating each module.

Also, in the MODULE table, there is a level field that

allows a multi-level hierarchy of the RMS.

1 - module ID;

2 - The ID of the technological operation it

describes (eg: O29);

3 - module name;

4 - description of the module;

5, 6, 7 - the coordinates of the sphere center that

circumscribe all the elements of the created/edited

module;

8 - the level on which the RPD3D network module

describes the RMS operation;

9 - Stores in the database when the module was

created or terminated;

The MOD_xxx table - which contains the data of

all construction elements of module no. xxx,

concatenated from the four initial tables - POZ, TRZ,

LEG, and CON.

1 - module ID;

2 - type of Petri network element (eg: POZ);

3 - name of the element;

4 - description of the element;

5, 6, 7 - the relative coordinates of the center of

the element towards the center of the sphere

circumscribing all the elements of the module;

8 - the graphic size of the element (1X - normal,

0.5X, 2X or 3X), resulting from the importance of the

element in the module;

9, 10 - are data taken from the POS table;

11 - data are taken from the TRZ table;

12, 13, 14 - data taken from the LEG table;

15,16,17,18 - data taken from the CON table;

19 - Stores in the database when the module is

created or terminated, data identical to those in field 9

of the MODULE table;

MODULEMODULE

01. ID_MOD (int 10) / notnull / autoincr / primary key

02. ID_OT (int 10) / notnull

03. DEN_MOD (vchar 10) / notnull / def ‘ ‘

04. DESCR_MOD (vchar 40) / def ‘ ‘

05. X_MOD (double) / notnull / def 0.0

06. Y_MOD (double) / notnull / def 0.0

07. Z_MOD (double) / notnull / def 0.0

08. NIVEL (int 1) / notnull

09. TSTP_MOD (Bigint 20) / notnull

MOD_NNNMOD_NNN

01. ID_MODN (int 10) / notnull / autoincr / primary key

02. TIP_ELEM (vchar 3) / notnull / def ‘ ‘

03. DEN_ELEM (vchar 10) / notnull / def ‘ ‘

04. DESCR_ELEM (vchar 40) / def ‘ ‘

05. X_ELEM (double) / notnull / def 0.0

06. Y_ELEM (double) / notnull / def 0.0

07. Z_ELEM (double) / notnull / def 0.0

08. SCALE_ELEM (double) / notnull / def 1.0

09. MARCAJ_POZ (int 10) / notnull / def 0

10. TIMP_EXEC_POZ (int 10) / notnull / def 0

11. ERR_TRZ (int 5) / notnull / def 0

12. DEN_ELEM_LEG (vchar 10) / notnull / def ‘ ‘

13. SENS_LEG (int 1) / notnull / def 0

14. TTB_LEG (int 10) / notnull / def 0

15. PLI (vchar 10) / notnull / def ‘ ‘

16. PLE (vchar 10) / notnull / def ‘ ‘

17. PONDERE (int 1) / notnull / def 3

18. STARE_CON (Int 1) / notnull / def 0,

19. VIZ_ELEM (int 1) / notnull

20. TSTP_ELEM (Bigint 20) / notnull

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

79

The processing command comes from the

outside of the system that we simulate, and it contains

the initial production specifications (RMS initial

data).

Obviously, the order data is stored and

processed in the same MySQL database that serves

the entire reconfigurable manufacturing system.

CMD table - stores the data of the processing

orders and their statuses.

1 - order ID;

2 - product ID - Specifies the type of product

(family of products or individual product);

3 - command name - type CMDnnn;

4 - description of the order;

5 - the number of copies to be made from the

specified product;

6 - TTF - TimeToFinish - Total manufacturing

time of all copies in the product;

7 - DD (Due Date) - calculated in a time-like

manner;

8 - EP (Earning Power) - The actual value is

obtained from a specific calculation algorithm and is

used to decide on the subsequent order of the order -

if it is the most profitable, the order is launched in the

manufacture, if less profitable, the order can be

stopped in the Order POR portfolio to be launched

later or the order can be rejected being considered

unprofitable;

9 - Status of the command that can have the

values: L - Launched, P - Paused, R - Resumed, F -

Finish, J - Rejected, D - Deferred, N - New;

10 - Time stamp - command TimeStamp -

holds the moment when the command is released -

when the command is in the L state (command

launched).

After creating the RPD3D modules, the initial

workshop is created based on available resources.

The RES table - one of the largest tables of

the MySQL database, stores the data for different

resources (machine tools, robots, buffers, parts or

tools warehouses, AGVs, etc.) from which the virtual

workshop will be assembled manufactures the product

/ products ordered.

1 - resource ID;

2 - resource name;

3 - description of the resource;

4 - resource type – Ex: RMTFU;

5 - resource scale - 0.5, 1.0, 2.0, 3.0;

6, 7, 8 - X_RES, Y_RES and Z_RES are the

absolute coordinates of the resource;

9 - resource state - R (Ready), W (Work), D

(Damaged), P (Pause), I (IntoRMS) and E (Error

correction);

10 - TTST (TimeToStart) resource start time;

11 - TTSP (TimeToStop) resource stop time;

12 - TTDR (TimeToDetect and Repair) time to

detect and repair the resource

13 - TTE (TimeToExclude) resource exclusion

time in RMS;

14 - TTI (TimeToIntegrate) resource

integration time in RMS;

15 - TTLT (TimeToLoadTool) tool load time

per resource;

16 - TTLP (TimeToLoadPiece) load time of

the piece on the resource;

17 - TTM (TimeToManufacture) the

manufacturing time of the technological operation on

the resource;

RESRES

01. ID_RES (int 10) / notnull / autoincr / primary key

02. DEN_RES (vchar 10) / notnull / def ‘ ‘

03. DESCR_RES (vchar 40) / def ‘ ‘

04. TIP_RES (vchar 5) / notnull / def ‘ ‘

05. SCALE_RES (double) / notnull / def 1.0

06. X_RES (double) / notnull / def 0.0

07. Y_RES (double) / notnull / def 0.0

08. Z_RES (double) / notnull / def 0.0

09. STARE_RES (vchar 1) / notnull / def ‘ ‘

10. TTST (int 4) / notnull / def 0

11. TTSP (int 4) / notnull / def 0

12. TTDR (int 4) / notnull / def 0

13. TTE (int 4) / notnull / def 0

14. TTI (int 4) / notnull / def 0

15. TTLT (int 4) / notnull / def 0

16. TTLP (int 4) / notnull / def 0

17. TTM (int 4) / notnull / def 0

18. TTDP (int 4) / notnull / def 0

19. TTDT (int 4) / notnull / def 0

20. TTA (int 4) / notnull / def 0

21. TTD (int 4) / notnull / def 0

22. TTRD (int 4) / notnull / def 0

23. TTRM (int 4) / notnull / def 0

24. CAR1 (vchar 50) / notnull / def ‘ ‘

25. VAL1 (vchar 20) / notnull / def ‘ ‘

26. CAR2 (vchar 50) / notnull / def ‘ ‘

27. VAL2 (vchar 20) / notnull / def ‘ ‘

28. CAR3 (vchar 50) / notnull / def ‘ ‘

29. VAL3 (vchar 20) / notnull / def ‘ ‘

30. VIZ_RES (int 1) / notnull

31. TSTP_RES (Bigint 20) / notnull

RES001

CMDCMD
01. ID_CMD (int 10) / notnull / autoincr / primary key

02. ID_PRD (int 10) / notnull

03. DEN_CMD (vchar 6) / notnull / def ‘ ‘

04. DESCR_CMD (vchar 40) / def ‘ ‘

05. NR_EX (int 10) / notnull

06. TTF (int 10) / notnull

07. DD (Bigint 20) / notnull

08. EP (double) / notnull

09. STARE_CMD (vchar 1) / notnull

10. TSTP_CMD (Bigint 20) / notnull

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

80

18 - TTDP (TimeToDownloadPiece) the

download time of the piece on the resource;

19 - TTDT (TimeToDownloadTool)

Download time of the resource from the resource;

20 - TTA (TimeToAproach) approach time of

RI of resource;

21 - TTD (TimeToDistance) distance of RI of

the resource;

22 - TTRD (TimeToRotateDep) rotation time

with a part store of the parts;

23 - TTRM (TimeToRotateMove) (time of

rotation or movement of the piece between two

successive machining operations with the same tool)

OT1SPn; 10 ÷ 23 - are expressed in seconds;

24, 26, 28 - CAR1, CAR2 and CAR3 - are the

main features that define the resource.

25, 27, 29 - VAL1, VAL2 and VAL3 - are the

values of the main features that define the resource.

30 - Visibility of the resource;

31 - Time stamp (Resource Time Stamp) - the

moment of RES insertion;

Initially, all resources are entered in the RES

table, even if they are not available at the time of tab

insertion, then the ones available (which have the R

state) and depending on the technological operation to

be performed and the correspondence between the

CAR1, 2.3 of the resource and of the technological

operation is made up the initial workshop.

A more special resource, requiring a separate

table in the database, due to more complex

information to be stored in the database, is the

autonomous guided vehicle (AGV) - a table

containing the data on a palletized transport system

based on self-governed vehicles that have a specific

route based on stations (places with clearly specified

coordinates where vehicles stop and transfer the

contents of the blades to the resources at those

coordinates).

Stations are named so as to individualize the

stopping place (Base, Station 1, Robot 1, Machine 2).

Also, in the AGV table are given IDs of the serviced

resources and the station time in each station.

As a rule, AGVs run on predetermined routes,

but in the case of RMS, which involves a multitude of

changes in the structure and location of resources,

perhaps the best option is to move the AGV on the

shortest route to the next station, avoiding obstacles

encountered in the path.

OT Table (Technological Operations) -

Stores the data for the different technological

operations that the ordered product / products need to

manufacture.

1 - OT ID; 2 - product ID;

3 - OT designation; Ex: RES1;

4 - OT description - optional;

5 - OT type; Ex: GAN, DEB etc;

6 - OT dependence on other previous OTs (1-

DA, 2-NU);

7 - The ID of the OT to which he is dependent;

8 - OT execution time;

9, 11, 13 - CAR1, CAR2 and CAR3 - are the

main features that define OT.

10, 12, 14 - VAL1, VAL2 and VAL3 - are the

values of the main defining characteristics. OT.

15 - Visibility of OT - 1 (ON) and 0 (OFF);

16 - Time stamp (OT TimeStamp);

An automated synchronization can be

performed by the database using the data in the

CAR1, 2 and 3, VAL1, 2 and 3 fields of the OT and

RES tables as follows: o OT with certain features can

only be performed on resources of a particular type

whose technological capacity is sufficient.

The sync factor (FACT_SINC) can be of the

following type:

 - E - Exclusive type synchronization (the

selected RES fits perfectly with dedicated OT - RES),

PRDPRD

01. ID_PRD (int 10) / notnull / autoincr / primary

02. DEN_CMD (vchar 6) / notnull / def ‘ ‘

03. DEN_PRD (vchar 10) / notnull / def ‘ ‘

04. DESCR_PRD (vchar 40) / def ‘ ‘

05. NR_EX (int 10) / notnull

06. TTF (int 10) / notnull def ‘0’

07. TSTP_PRD (Bigint 20) / notnull

PRD001

OTOT

01. ID_OT (int 10) / notnull / autoincr / primary key

02. ID_PRD (int 10) / notnull

03. DEN_OT (vchar 6) / notnull / def ‘ ‘

04. DESCR_OT (vchar 40) / def ‘ ‘

05. TIP_OT (vchar 5) / notnull / def ‘ ‘

06. DEP (int 1) / notnull / def 0

07. OT_DEPEND (int 10)

08. TEOT (int 4) / notnull / def 0

09. CAR1 (vchar 50) / notnull / def ‘ ‘

10. VAL1 (vchar 20) / notnull / def ‘ ‘

11. CAR2 (vchar 50) / notnull / def ‘ ‘

12. VAL2 (vchar 20) / notnull / def ‘ ‘

13. CAR3 (vchar 50) / notnull / def ‘ ‘

14. VAL3 (vchar 20) / notnull / def ‘ ‘

15. VIZ_OT (int 1) / notnull

16. TSTP_OT (Bigint 20) / notnull

AGVAGV

01 ID_AGV (int 10) / notnull / autoincr / primary

02. ID_RES (int 10) / notnull

03. DEN_AGV (vchar 6) / notnull / def ‘ ‘

04. DEN_STATIE (vchar 20) / notnull / def ‘ ‘

06. X_STATIE (double) / def 0.0

07. Y_STATIE (double) / def 0.0

08. Z_STATIE (double) / def 0.0

09. TTS_STATIE (int 10) / notnull

10. TSTP_AGV (Bigint 20) / notnull

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

81

 - U - Universal type synchronization (the selected

RES is the universal type and it can also perform the

respective OT),

 - L - Synchronization at the technological limit of

RES;

The synchronization mode (MOD_SINC) can

be: A - Automatic, S - Semiautomatic (program

selection with user confirmation) or M - Manual. If

we have for, OT - CAR1 = vit. rotation, VAL1 = 1500

rpm, and we have 3 resources available:

RES1 - CAR1 = vit. rotation,

VAL1 = 2000-3000 rpm,

RES2 - CAR1 = vit. rotation,

VAL1 = 800-1500 rpm,

RES3 - CAR1 = vit. rotation,

VAL1 = 1000-2500 rpm

It is obvious that we can not choose RES1,

RES2 has VAL1 at the technological limit (it is a

risky choice) so the best choice is RES3.

The results of automatic synchronization are

deposited in the OT_RES table of the database.

1 - OT_RES ID; 2 - OT ID; 3 - RES ID;

4 - Mod_sinc-OT synchronization mode with

RES;

5 - Synchronization factor:

6 - TimeTamp OT_RES;

By analyzing technological operations and

their interdependencies, technological flows (FT) are

created.

1 - Technology Flow Id;

2 - Name of the technological flow;

3 - TTE_FT (9-digit integer) - TimeToExecute

- Total execution time of the technological operation

included in the technological flow;
4 - NOT_FT- NumberOfOT - the total number

of technological operations included in the

technological flow;

Creating the streams is done automatically by

combining different machine tool set variants, parts of

the tool and tool transport system, parts of the tool

and tool storage system, industrial robots, etc.,

resulting in a large number of FT possible.

Involved in the simulation process are the

POS, TRZ, LEG tables listed above as well as the

MRJ table (containing the list of RPD3D during

simulation) and SIM_T (containing the simulation

data - what transitions are executed, when and what

markup is generated).

The AT table contains all assembled

production workshop data from the three-dimensional

Petri dish modules, and consists of concatenating the

OT_RESOT_RES

01. ID_OT_RES (int 10) / notnull / autoincr / primary key

02. ID_OT (int 10) / notnull

03. ID_RES (int 10) / Notnull

04. MOD_SINC (vchar 1) / notnull

05. FACT_SINC (vchar 1) / notnull

06. TSTP_OT_RES (Bigint 20) / notnull

FTFT

01. ID_FT (int 10) / notnull / autoincr / primary key

02. DEN_FT (vchar 6) / notnull / def ‘ ‘

03. TTE_FT (int 10) / def 0

04. NOT_FT (int 10) / def 0

05. TSTP_FT (Bigint 20) / notnull

MRJMRJ

01. ID_MRJ (int 10) / notnull / autoincr / primary key

02. DEN_MRJ (vchar 6) / notnull / def ‘ ‘

03. VAL_MRJ (vchar n) / def ‘ ‘ , n – nr. de POZ (999)

04. TSTP_MRJ (Bigint 20) / notnull

SIM_tSIM_t

01. ID_SIM_T (int 10) / notnull / autoincr / primary key

02. MRJ_I (vchar 10) / notnull / def ‘ ‘

03. TRZE (vchar 10) / def ‘ ‘

04. TEX (Int 10) / def ‘0‘

05. MRJ_F (vchar 10) / def ‘ ‘

06. TSTP_SIM_T (Bigint 20) / notnull

ATAT

01. ID_AT (int 10) / notnull / autoincr / primary key

02. ID_OT (int 10) / notnull

03. DEN_MOD (vchar 10) / notnull / def ‘ ‘

04. DESCR_MOD (vchar 40) / def ‘ ‘

05. X_MOD (double) / notnull / def 0.0

06. Y_MOD (double) / notnull / def 0.0

07. Z_MOD (double) / notnull / def 0.0

08. NIVEL (int 1) / notnull

09. TSTP_MOD (Bigint 20) / notnull

10. TIP_ELEM (vchar 3) / notnull / def ‘ ‘

11. DEN_ELEM (vchar 10) / notnull / def ‘ ‘

12. DESCR_ELEM (vchar 40) / def ‘ ‘

13. X_ELEM (double) / notnull / def 0.0

14. Y_ELEM (double) / notnull / def 0.0

15. Z_ELEM (double) / notnull / def 0.0

16. SCALE_ELEM (double) / notnull / def 10

17. MARCAJ_POZ (int 10) / notnull / def 0

18. TIMP_EXEC_POZ (int 10) / notnull / def 0

19. ERR_TRZ (int 5) / notnull / def 0

20. DEN_ELEM_LEG (vchar 10) / notnull / def ‘ ‘

21. SENS_LEG (int 1) / notnull / def 0

22. TTB_LEG (int 10) / notnull / def 0

23. PLI (vchar 10) / notnull / def ‘ ‘

24. PLE (vchar 10) / notnull / def ‘ ‘

25. PONDERE (int 1) / notnull / def 3

26. STARE_CON (Int 1) / notnull / def 0

27. VIZ_ELEM (int 1) / notnull / def 1

28. TSTP_ELEM (Bigint 20) / notnull

MOD_023

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

82

data in the MODULE table and all MODnnn tables

related to the modules that made up the workshop.

Rules for completing the AT table:

 The field DEN_MOD is taken from the MOD

table;

 The fields X_MOD, Y_MOD and Z_MOD are

the coordinates of the module center and are

taken from the MOD table;

 The Level field is the RMS level on which the

DEN_MOD module is;

 The field TIP_ELEM has the values: POZ, TRZ,

LEG, CON;

 The fields X_ELEM, Y_ELEM and Z_ELEM are

the relative coordinates of the element RPD3D to

the center of the sphere circumscribed to the

module;

 SCALE fields have values: 1X = 10, 1 / 2X = 5,

2X = 20, 3X = 30;

 Fields 17-24 are taken from the MOD_nnn tables

 The SENS_LEG field has a value of 2 for the

POS, TRZ and CON elements, 0 for LEG in the

direct sense, and 1 for Indirect LEG;

 The TTB_LEG field has a value of 0 for the

elements POZ, TRZ and CON, values between 1-

3 seconds for the LEG between the V, C and I

type POS with TRZ, values between 4-6 seconds

for the LEG between the POS of the R type with

TRZ and values between 7-9 seconds for LEG

between POS of type O with TRZ;

 The PLI field is automatically filled with the POS

to which the connector is connected, and the PLE

is completed when the modules are connected to

each other.

 The PONDER field has a value of 1 or 2 for the

CON type element, 0 for POS and TRZ, and 3 for

Leg elements.

 The STARE_CON field has a value of 0 or 1

only for the CON type element, for the other

elements its value is 0.

The table required for ordering orders is the

POR (Command Portfolio) table.

1 - Table ID;

2 - The dosing period number (fifth);

3 - Value of the dosing period (fifth);

4 - Name of the order (from the CMD table);

 5 - The moment of the order update in the

portfolio;

The tables required to keep data related to the time

evolution of the production system and to

influence this manufacturing evolution on the

RMS are OPT and PRODUCTION or FAB.

2 - Amount of the dosing period of the

simulation;

3 - The total value of the EP reconfigurable

manufacturing system;

4 - Moment of updating the data in each record;

The OPT table contains the set options that

affect the entire RMS:

2 - Option name; 3 - Value of the option;

Ex: The TSTP_mod option can have values:

"oldest" or "newest", the zoom_niv option can have

values: 0.053 or 0.2 or 35.1;

Another table related to the RMS

reconfiguration evolution is the LOG table.

2 - The type of log action (writing, reading,

updating, deleting registration, inserting or removing

a resource from RMS);

3 - Action data (SQL sequence, alphanumeric

values, simple or complex characters);

4 - Moment of updating the data in each record

(timestamp);

 After creating the RMS and RPD3D

modeling it, by analyzing the OT and their

dependencies, creating technological fluxes and

creating the initial workshop on the basis of the

available RES, it is done using the SIM R2 table,

analyzing the possibilities of manufacturing the

products (it might (for a certain OT there is no

available resource at the time of that OT), simulating

CMD001

Por (portofoliu comenzi)Por (portofoliu comenzi)

01. ID_POR (int 10) / notnull / autoincr / primary key

02. NR_PER (int 10) / notnull def ‘1’

03. VAL_PER (int 10) / notnull def ‘1’

04. DEN_CMD (vchar 6) / notnull / def ‘ ‘

05. TSTP_POR (Bigint 20) / notnull

FAB (FABRIcatie)FAB (FABRIcatie)

01. ID_FAB (int 10) / notnull / autoincr / primary key

02. PERIODOZ (int 10) / notnull / def ‘0‘

03. EP_RMS (int 10) / def ‘0‘

04. TSTP_FAB (Bigint 20) / notnull

LOGLOG

01. ID_LOG (int 10) / notnull / autoincr / primary key

02. ACTIUNE (vchar 20) / notnull / def ‘ ‘

03. VAL_LOG (vchar 50) / notnull / def ‘ ‘

04. TSTP_LOG (Bigint 20) / notnull

OptOpt

01. ID_OPT (int 10) / notnull / autoincr / primary key

02. OPTIUNE (vchar 20) / notnull / def ‘ ‘

03. VALOARE (vchar 20) / def ‘ ‘

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

83

the production of the ordered products with the initial

data (resources, relationships, technological flows,

number of parts, delivery date and specific profit rate

" winning power "- EP).

1 - Table ID;
2 - Initial Mark;

3 - Transition executed;

4 - Execution time of the executed transition;

5 - The final mark;

6 - Moment of execution of the transaction;

The SIM R3, SIM R4 and SIM R5 tables are

associated with the AT_R3, AT_R4 and AT_R5

tables and have the same structure as the SIM R2 and

AT tables, and are supplemented with modified RMS

data after reconfigurations of type :

R3 - Reconfiguration of RMS to ensure system

stability and viability;

R4 - Reconfiguration of RMS due to change in

status of RES;

R5 - RMS reconfiguration due to changing

production specifications to get the best value for the

EP index;

3. CONCLUSIONS

The use of a database in the optimal management of

RMS is essential because it allows both the storage

and processing, but also the transfer of a large amount

of data between different modules, which can

simulate the optimal operation of a reconfigurable

manufacturing system.

After running RMS manufacturing simulations

of various ordered products, you can aggregate

existing data in the database to display results in the

form of reports like:

 Functions I, O, C,

 Grace of accessible bookmarks

 Tree and cover graph

 Triggering frequencies for transitions

 Own and maximum operating speed

 Graph of technological reconfigurable flow

 Placement of different reconfigurations in

time

 Time evolution of performance indices

 Conclusions drawn from the simulation to

optimize actual production

 Synopsis of RMS evolution during

simulation

Also, among the advantages of using a

database in the optimal management of RMSs can be

the possibility of remote multiplication of activities by

synchronizing data with other RMSs via Internet

networks, thus assembling virtual factories integrates

a variety of software products, modeling tools and

methodologies to solve a wide range of manufacturing

issues. In these virtual factories it will be possible to

detail the designs of the systems, to test the various

configurations, to briefly scroll through all the

features of the system that influence the performance

and efficiency of these operations without making

important changes to the actual manufacturing

system. Virtual manufacturing can help make

economic decisions based on collected statistical data.

In this way, it is possible to change the way of

decision-making, establishing virtual manufacturing

alternatives associated with lower costs.

REFERENCES

[1] Marinescu,V., Research on the flexible management of

metalworking processes cold, PhD Thesis, University "Lower

Danube", Galati, 2000;

[2] Teodor, F., Optimal management of reconfigurable

manufacturing systems, PhD Thesis, University "Lower Danube",

Galati, 2016.

SIM R2SIM R2

01. ID_SIM_R2 (int 10) / notnull / autoincr / primary key

02. MRJ_I (vchar 10) / notnull / def ‘ ‘

03. TRZE (vchar 10) / def ‘ ‘

04. TEX (Int 10) / def ‘0‘

05. MRJ_F (vchar 10) / def ‘ ‘

06. TSTP_SIM_R2 (Bigint 20) / notnull

